Spaces:
Running
Running
Commit
·
49c48e3
1
Parent(s):
d35be66
Initial commit with model trained with loss less than 0.099999
Browse files- README.md +98 -4
- app.py +56 -0
- decoder_only_transformer.pth +3 -0
- input.txt +0 -0
- lr_finder.py +90 -0
- requirements.txt +3 -0
- train.py +275 -0
- train_get2-8-init.py +287 -0
- transformer.py +125 -0
README.md
CHANGED
@@ -1,13 +1,107 @@
|
|
1 |
---
|
2 |
title: NextWordGPT
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.12.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description:
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: NextWordGPT
|
3 |
+
emoji: 🏃
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.12.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: 'Transformer trained on Shakespearean text '
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
+
<pre>
|
17 |
+
Epoch 1/50: 100%|██████████| 82/82 [01:16<00:00, 1.08step/s, loss=6.2489]
|
18 |
+
Epoch 1/50, Loss: 7.0745, Time: 76.07s
|
19 |
+
Epoch 2/50: 100%|██████████| 82/82 [01:22<00:00, 1.00s/step, loss=5.6592]
|
20 |
+
Epoch 2/50, Loss: 5.6716, Time: 82.14s
|
21 |
+
Epoch 3/50: 100%|██████████| 82/82 [01:25<00:00, 1.05s/step, loss=5.2294]
|
22 |
+
Epoch 3/50, Loss: 5.1465, Time: 85.97s
|
23 |
+
Epoch 4/50: 100%|██████████| 82/82 [01:27<00:00, 1.07s/step, loss=4.8800]
|
24 |
+
Epoch 4/50, Loss: 4.8121, Time: 87.40s
|
25 |
+
Epoch 5/50: 100%|██████████| 82/82 [01:28<00:00, 1.08s/step, loss=4.6155]
|
26 |
+
Epoch 5/50, Loss: 4.5597, Time: 88.28s
|
27 |
+
Epoch 6/50: 100%|██████████| 82/82 [01:29<00:00, 1.10s/step, loss=4.4006]
|
28 |
+
Epoch 6/50, Loss: 4.3344, Time: 89.88s
|
29 |
+
Epoch 7/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=4.1696]
|
30 |
+
Epoch 7/50, Loss: 4.1084, Time: 91.19s
|
31 |
+
Epoch 8/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=3.9078]
|
32 |
+
Epoch 8/50, Loss: 3.8753, Time: 91.43s
|
33 |
+
Epoch 9/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=3.6197]
|
34 |
+
Epoch 9/50, Loss: 3.6167, Time: 91.38s
|
35 |
+
Epoch 10/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=3.3067]
|
36 |
+
Epoch 10/50, Loss: 3.3436, Time: 91.24s
|
37 |
+
Epoch 11/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=3.0890]
|
38 |
+
Epoch 11/50, Loss: 2.9951, Time: 91.45s
|
39 |
+
Epoch 12/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=2.7631]
|
40 |
+
Epoch 12/50, Loss: 2.7189, Time: 91.25s
|
41 |
+
Epoch 13/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=2.5140]
|
42 |
+
Epoch 13/50, Loss: 2.4935, Time: 91.21s
|
43 |
+
Epoch 14/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=2.3475]
|
44 |
+
Epoch 14/50, Loss: 2.3095, Time: 91.42s
|
45 |
+
Epoch 15/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=2.1527]
|
46 |
+
Epoch 15/50, Loss: 2.1343, Time: 91.61s
|
47 |
+
Epoch 16/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=1.9820]
|
48 |
+
Epoch 16/50, Loss: 1.9522, Time: 91.35s
|
49 |
+
Epoch 17/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=1.7411]
|
50 |
+
Epoch 17/50, Loss: 1.7585, Time: 91.53s
|
51 |
+
Epoch 18/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=1.5516]
|
52 |
+
Epoch 18/50, Loss: 1.5744, Time: 91.77s
|
53 |
+
Epoch 19/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=1.3633]
|
54 |
+
Epoch 19/50, Loss: 1.4087, Time: 91.45s
|
55 |
+
Epoch 20/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=1.2165]
|
56 |
+
Epoch 20/50, Loss: 1.2397, Time: 91.37s
|
57 |
+
Epoch 21/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=1.1129]
|
58 |
+
Epoch 21/50, Loss: 1.0790, Time: 91.69s
|
59 |
+
Epoch 22/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.9431]
|
60 |
+
Epoch 22/50, Loss: 0.9302, Time: 91.61s
|
61 |
+
Epoch 23/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.8262]
|
62 |
+
Epoch 23/50, Loss: 0.8121, Time: 91.39s
|
63 |
+
Epoch 24/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.7406]
|
64 |
+
Epoch 24/50, Loss: 0.7170, Time: 91.36s
|
65 |
+
Epoch 25/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.6618]
|
66 |
+
Epoch 25/50, Loss: 0.6387, Time: 91.58s
|
67 |
+
Epoch 26/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.5878]
|
68 |
+
Epoch 26/50, Loss: 0.5709, Time: 91.55s
|
69 |
+
Epoch 27/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.5246]
|
70 |
+
Epoch 27/50, Loss: 0.5079, Time: 91.23s
|
71 |
+
Epoch 28/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.4453]
|
72 |
+
Epoch 28/50, Loss: 0.4472, Time: 91.39s
|
73 |
+
Epoch 29/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.3966]
|
74 |
+
Epoch 29/50, Loss: 0.3912, Time: 91.58s
|
75 |
+
Epoch 30/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.3454]
|
76 |
+
Epoch 30/50, Loss: 0.3401, Time: 91.14s
|
77 |
+
Epoch 31/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.3288]
|
78 |
+
Epoch 31/50, Loss: 0.3059, Time: 91.06s
|
79 |
+
Epoch 32/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.2900]
|
80 |
+
Epoch 32/50, Loss: 0.2712, Time: 91.22s
|
81 |
+
Epoch 33/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.2608]
|
82 |
+
Epoch 33/50, Loss: 0.2438, Time: 91.44s
|
83 |
+
Epoch 34/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.2365]
|
84 |
+
Epoch 34/50, Loss: 0.2215, Time: 91.02s
|
85 |
+
Epoch 35/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.2159]
|
86 |
+
Epoch 35/50, Loss: 0.2017, Time: 91.14s
|
87 |
+
Epoch 36/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1979]
|
88 |
+
Epoch 36/50, Loss: 0.1840, Time: 91.59s
|
89 |
+
Epoch 37/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1814]
|
90 |
+
Epoch 37/50, Loss: 0.1681, Time: 91.70s
|
91 |
+
Epoch 38/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1661]
|
92 |
+
Epoch 38/50, Loss: 0.1539, Time: 91.46s
|
93 |
+
Epoch 39/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1522]
|
94 |
+
Epoch 39/50, Loss: 0.1410, Time: 91.53s
|
95 |
+
Epoch 40/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1390]
|
96 |
+
Epoch 40/50, Loss: 0.1295, Time: 91.60s
|
97 |
+
Epoch 41/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1350]
|
98 |
+
Epoch 41/50, Loss: 0.1215, Time: 91.51s
|
99 |
+
Epoch 42/50: 100%|██████████| 82/82 [01:31<00:00, 1.11s/step, loss=0.1304]
|
100 |
+
Epoch 42/50, Loss: 0.1156, Time: 91.43s
|
101 |
+
Epoch 43/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1247]
|
102 |
+
Epoch 43/50, Loss: 0.1099, Time: 91.80s
|
103 |
+
Epoch 44/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1162]
|
104 |
+
Epoch 44/50, Loss: 0.1047, Time: 91.56s
|
105 |
+
Epoch 45/50: 100%|██████████| 82/82 [01:31<00:00, 1.12s/step, loss=0.1122]
|
106 |
+
Epoch 45/50, Loss: 0.0998, Time: 91.53s
|
107 |
+
</pre>
|
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from transformers import GPT2Tokenizer
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load tokenizer
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Using GPT-2 tokenizer for compatibility
|
8 |
+
|
9 |
+
# Load model
|
10 |
+
from train_get2_8_init import GPT, GPTConfig
|
11 |
+
|
12 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
13 |
+
|
14 |
+
# Initialize the model
|
15 |
+
config = GPTConfig()
|
16 |
+
model = GPT(config)
|
17 |
+
model.load_state_dict(torch.load("decoder_only_transformer.pth", map_location=torch.device(device)))
|
18 |
+
model.eval()
|
19 |
+
model.to(device)
|
20 |
+
|
21 |
+
# Prediction function
|
22 |
+
def generate_text(input_text, max_length=50, top_k=50):
|
23 |
+
with torch.no_grad():
|
24 |
+
# Tokenize input
|
25 |
+
tokens = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
26 |
+
x = tokens
|
27 |
+
while x.size(1) < max_length:
|
28 |
+
# Forward pass to get logits
|
29 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
30 |
+
logits = logits[:, -1, :] # Take the logits at the last position
|
31 |
+
|
32 |
+
# Get probabilities and do top-k sampling
|
33 |
+
probs = F.softmax(logits, dim=-1)
|
34 |
+
topk_probs, topk_indices = torch.topk(probs, top_k, dim=-1)
|
35 |
+
ix = torch.multinomial(topk_probs, 1) # Sample token
|
36 |
+
xcol = torch.gather(topk_indices, -1, ix) # Gather indices
|
37 |
+
x = torch.cat((x, xcol), dim=1) # Append to sequence
|
38 |
+
|
39 |
+
# Decode tokens into text
|
40 |
+
generated_text = tokenizer.decode(x[0])
|
41 |
+
return generated_text
|
42 |
+
|
43 |
+
# Gradio Interface
|
44 |
+
def gradio_interface(input_text):
|
45 |
+
return generate_text(input_text)
|
46 |
+
|
47 |
+
interface = gr.Interface(
|
48 |
+
fn=gradio_interface,
|
49 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
50 |
+
outputs=gr.Textbox(lines=2, placeholder="Generated text will appear here..."),
|
51 |
+
title="Text Prediction App",
|
52 |
+
description="Enter a text prompt to generate the next sequence of words.",
|
53 |
+
)
|
54 |
+
|
55 |
+
# Launch the app
|
56 |
+
interface.launch()
|
decoder_only_transformer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d66ba9508c76b5b60af5713845ebe0528ea2e034d4fb015243bc6f62e764e144
|
3 |
+
size 548151190
|
input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lr_finder.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch_lr_finder import LRFinder
|
2 |
+
from torch.nn import CrossEntropyLoss
|
3 |
+
import torch.optim as optim
|
4 |
+
import torch
|
5 |
+
from transformer import Config, DecoderOnlyTransformer
|
6 |
+
|
7 |
+
class DataLoaderLite:
|
8 |
+
def __init__(self, B, T):
|
9 |
+
self.B = B
|
10 |
+
self.T = T
|
11 |
+
|
12 |
+
# at init load tokens from disk and store them in memory
|
13 |
+
with open('input.txt', 'r') as f:
|
14 |
+
text = f.read()
|
15 |
+
enc = tiktoken.get_encoding('gpt2')
|
16 |
+
tokens = enc.encode(text)
|
17 |
+
self.tokens = torch.tensor(tokens)
|
18 |
+
print(f'loaded {len(self.tokens)} tokens')
|
19 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
20 |
+
|
21 |
+
# state
|
22 |
+
self.current_position = 0
|
23 |
+
|
24 |
+
def next_batch(self):
|
25 |
+
B, T = self.B, self.T
|
26 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
27 |
+
x = (buf[:-1]).view(B, T) # inputs
|
28 |
+
y = (buf[1:]).view(B, T) # targets
|
29 |
+
# advance the position in the tensor
|
30 |
+
self.current_position += B*T
|
31 |
+
# if loading the next batch would be out of bounds, reset
|
32 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
33 |
+
self.current_position = 0
|
34 |
+
return x, y
|
35 |
+
|
36 |
+
|
37 |
+
batches, no_of_tokens = 16, 128
|
38 |
+
train_loader = DataLoaderLite(B=batches, T=no_of_tokens)
|
39 |
+
steps_per_epoch = len(train_loader.tokens) // (batches * no_of_tokens)
|
40 |
+
|
41 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
42 |
+
# Model configuration
|
43 |
+
config = Config()
|
44 |
+
|
45 |
+
# Tokenizer
|
46 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Use GPT-2 tokenizer for compatibility
|
47 |
+
|
48 |
+
# Load trained model
|
49 |
+
model = DecoderOnlyTransformer(config)
|
50 |
+
model.load_state_dict(torch.load("decoder_only_transformer.pth", map_location=torch.device('cpu')))
|
51 |
+
model.eval()
|
52 |
+
model.to(device)
|
53 |
+
|
54 |
+
amp_config = {
|
55 |
+
'device_type': 'cuda',
|
56 |
+
'dtype': torch.float16,
|
57 |
+
}
|
58 |
+
criterion = CrossEntropyLoss()
|
59 |
+
grad_scaler = torch.cuda.amp.GradScaler()
|
60 |
+
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
61 |
+
|
62 |
+
# Define a custom batch fetching wrapper
|
63 |
+
class CustomDataLoader:
|
64 |
+
def __init__(self, next_batch_func, num_batches):
|
65 |
+
self.next_batch_func = next_batch_func
|
66 |
+
self.num_batches = num_batches
|
67 |
+
self.current_batch = 0
|
68 |
+
|
69 |
+
def __iter__(self):
|
70 |
+
self.current_batch = 0
|
71 |
+
return self
|
72 |
+
|
73 |
+
def __next__(self):
|
74 |
+
if self.current_batch < self.num_batches:
|
75 |
+
self.current_batch += 1
|
76 |
+
return self.next_batch_func()
|
77 |
+
else:
|
78 |
+
raise StopIteration
|
79 |
+
|
80 |
+
# Create a custom data loader using next_batch
|
81 |
+
custom_train_loader = CustomDataLoader(train_loader.next_batch(), num_batches=steps_per_epoch)
|
82 |
+
|
83 |
+
# Use the custom data loader with LRFinder
|
84 |
+
lr_finder = LRFinder(
|
85 |
+
model, optimizer, criterion, device='cuda',
|
86 |
+
amp_backend='torch', amp_config=amp_config, grad_scaler=grad_scaler
|
87 |
+
)
|
88 |
+
lr_finder.range_test(custom_train_loader, end_lr=5, num_iter=1000, step_mode='exp')
|
89 |
+
lr_finder.plot()
|
90 |
+
lr_finder.reset()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
train.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from torch.optim.lr_scheduler import StepLR
|
9 |
+
from torch.cuda.amp import GradScaler, autocast
|
10 |
+
import tiktoken
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
class CausalSelfAttention(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__()
|
17 |
+
assert config.n_embd % config.n_head == 0
|
18 |
+
# key, query, value projections for all heads, but in a batch
|
19 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
20 |
+
# output projection
|
21 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
22 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
23 |
+
# regularization
|
24 |
+
self.n_head = config.n_head
|
25 |
+
self.n_embd = config.n_embd
|
26 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
30 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
31 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
32 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
33 |
+
qkv = self.c_attn(x)
|
34 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
35 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
|
39 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
40 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
41 |
+
att = F.softmax(att, dim=-1)
|
42 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
43 |
+
|
44 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
45 |
+
# output projection
|
46 |
+
y = self.c_proj(y)
|
47 |
+
return y
|
48 |
+
|
49 |
+
|
50 |
+
class MLP(nn.Module):
|
51 |
+
|
52 |
+
def __init__(self, config):
|
53 |
+
super().__init__()
|
54 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
55 |
+
self.gelu = nn.GELU(approximate='tanh')
|
56 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
57 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = self.c_fc(x)
|
61 |
+
x = self.gelu(x)
|
62 |
+
x = self.c_proj(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
class Block(nn.Module):
|
66 |
+
|
67 |
+
def __init__(self, config):
|
68 |
+
super().__init__()
|
69 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.attn = CausalSelfAttention(config)
|
71 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
72 |
+
self.mlp = MLP(config)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
x = x + self.attn(self.ln_1(x))
|
76 |
+
x = x + self.mlp(self.ln_2(x))
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
@dataclass
|
81 |
+
class GPTConfig:
|
82 |
+
block_size: int = 1024 # max sequence length
|
83 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
84 |
+
n_layer: int = 12 # number of layers
|
85 |
+
n_head: int = 12 # number of heads
|
86 |
+
n_embd: int = 768 # embedding dimension
|
87 |
+
|
88 |
+
|
89 |
+
class GPT(nn.Module):
|
90 |
+
|
91 |
+
def __init__(self, config):
|
92 |
+
super().__init__()
|
93 |
+
self.config = config
|
94 |
+
|
95 |
+
self.transformer = nn.ModuleDict(dict(
|
96 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
97 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
98 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
99 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
100 |
+
))
|
101 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
102 |
+
|
103 |
+
# weight sharing
|
104 |
+
self.transformer.wte.weight = self.lm_head.weight
|
105 |
+
|
106 |
+
# weight initialization
|
107 |
+
self.apply(self._init_weights)
|
108 |
+
|
109 |
+
def _init_weights(self, module):
|
110 |
+
if isinstance(module, nn.Linear):
|
111 |
+
std = 0.02
|
112 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
113 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
114 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
115 |
+
if module.bias is not None:
|
116 |
+
torch.nn.init.zeros_(module.bias)
|
117 |
+
elif isinstance(module, nn.Embedding):
|
118 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
def forward(self, idx, targets=None):
|
123 |
+
# idx is of shape (B, T)
|
124 |
+
B, T = idx.size()
|
125 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
126 |
+
# forward the token and posisition embeddings
|
127 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
128 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
129 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
130 |
+
x = tok_emb + pos_emb
|
131 |
+
# forward the blocks of the transformer
|
132 |
+
for block in self.transformer.h:
|
133 |
+
x = block(x)
|
134 |
+
# forward the final layernorm and the classifier
|
135 |
+
x = self.transformer.ln_f(x)
|
136 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
137 |
+
loss = None
|
138 |
+
if targets is not None:
|
139 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
140 |
+
return logits, loss
|
141 |
+
|
142 |
+
@classmethod
|
143 |
+
def from_pretrained(cls, model_type):
|
144 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
145 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
146 |
+
from transformers import GPT2LMHeadModel
|
147 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
148 |
+
|
149 |
+
# n_layer, n_head and n_embd are determined from model_type
|
150 |
+
config_args = {
|
151 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
152 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
153 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
154 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
155 |
+
}[model_type]
|
156 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
157 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
158 |
+
# create a from-scratch initialized minGPT model
|
159 |
+
config = GPTConfig(**config_args)
|
160 |
+
model = GPT(config)
|
161 |
+
sd = model.state_dict()
|
162 |
+
sd_keys = sd.keys()
|
163 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
164 |
+
|
165 |
+
# init a huggingface/transformers model
|
166 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
167 |
+
sd_hf = model_hf.state_dict()
|
168 |
+
|
169 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
170 |
+
sd_keys_hf = sd_hf.keys()
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
172 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
173 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
174 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
175 |
+
# this means that we have to transpose these weights when we import them
|
176 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
177 |
+
for k in sd_keys_hf:
|
178 |
+
if any(k.endswith(w) for w in transposed):
|
179 |
+
# special treatment for the Conv1D weights we need to transpose
|
180 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
181 |
+
with torch.no_grad():
|
182 |
+
sd[k].copy_(sd_hf[k].t())
|
183 |
+
else:
|
184 |
+
# vanilla copy over the other parameters
|
185 |
+
assert sd_hf[k].shape == sd[k].shape
|
186 |
+
with torch.no_grad():
|
187 |
+
sd[k].copy_(sd_hf[k])
|
188 |
+
|
189 |
+
return model
|
190 |
+
|
191 |
+
# model = GPT.from_pretrained('gpt2')
|
192 |
+
|
193 |
+
device = 'cpu'
|
194 |
+
if torch.cuda.is_available():
|
195 |
+
device = 'cuda'
|
196 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
197 |
+
device = "mps"
|
198 |
+
print(f"using device: {device}")
|
199 |
+
|
200 |
+
# SEED
|
201 |
+
torch.manual_seed(1337)
|
202 |
+
if torch.cuda.is_available():
|
203 |
+
torch.cuda.manual_seed(1337)
|
204 |
+
|
205 |
+
# STOP
|
206 |
+
num_return_sequences = 5
|
207 |
+
max_length = 30
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
import tiktoken
|
212 |
+
|
213 |
+
class DataLoaderLite:
|
214 |
+
def __init__(self, B, T):
|
215 |
+
self.B = B
|
216 |
+
self.T = T
|
217 |
+
|
218 |
+
# at init load tokens from disk and store them in memory
|
219 |
+
with open('/kaggle/input/input-txt/input.txt', 'r') as f:
|
220 |
+
text = f.read()
|
221 |
+
enc = tiktoken.get_encoding('gpt2')
|
222 |
+
tokens = enc.encode(text)
|
223 |
+
self.tokens = torch.tensor(tokens)
|
224 |
+
print(f'loaded {len(self.tokens)} tokens')
|
225 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
226 |
+
|
227 |
+
# state
|
228 |
+
self.current_position = 0
|
229 |
+
|
230 |
+
def next_batch(self):
|
231 |
+
B, T = self.B, self.T
|
232 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
233 |
+
x = (buf[:-1]).view(B, T) # inputs
|
234 |
+
y = (buf[1:]).view(B, T) # targets
|
235 |
+
# advance the position in the tensor
|
236 |
+
self.current_position += B*T
|
237 |
+
# if loading the next batch would be out of bounds, reset
|
238 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
239 |
+
self.current_position = 0
|
240 |
+
return x, y
|
241 |
+
|
242 |
+
model = GPT(GPTConfig())
|
243 |
+
model.to(device)
|
244 |
+
|
245 |
+
batches, no_of_tokens = 16, 256
|
246 |
+
train_loader = DataLoaderLite(B=batches, T=no_of_tokens)
|
247 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0.01)
|
248 |
+
scheduler = StepLR(optimizer, step_size=10, gamma=0.5)
|
249 |
+
|
250 |
+
# Training Loop
|
251 |
+
steps_per_epoch = len(train_loader.tokens) // (batches * no_of_tokens)
|
252 |
+
print(steps_per_epoch)
|
253 |
+
EPOCHS = 50
|
254 |
+
for epoch in range(EPOCHS):
|
255 |
+
loss_list = []
|
256 |
+
train_loader_temp = train_loader
|
257 |
+
start_time = time.time()
|
258 |
+
|
259 |
+
with tqdm(total=steps_per_epoch, desc=f"Epoch {epoch + 1}/{EPOCHS}", unit="step") as pbar:
|
260 |
+
for step in range(steps_per_epoch):
|
261 |
+
x, y = train_loader.next_batch()
|
262 |
+
x, y = x.to(device), y.to(device)
|
263 |
+
optimizer.zero_grad()
|
264 |
+
logits, loss = model(x, y)
|
265 |
+
loss.backward()
|
266 |
+
optimizer.step()
|
267 |
+
loss_list.append(loss.item())
|
268 |
+
pbar.update(1)
|
269 |
+
pbar.set_postfix(loss=f"{loss.item():.4f}")
|
270 |
+
|
271 |
+
scheduler.step()
|
272 |
+
epoch_loss = sum(loss_list) / len(loss_list)
|
273 |
+
print(f"Epoch {epoch + 1}/{EPOCHS}, Loss: {epoch_loss:.4f}, Time: {time.time() - start_time:.2f}s")
|
274 |
+
if(epoch_loss < 0.099999):
|
275 |
+
break
|
train_get2-8-init.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Solving for residual std scaling issue
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
att = F.softmax(att, dim=-1)
|
41 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
44 |
+
# output projection
|
45 |
+
y = self.c_proj(y)
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = x + self.attn(self.ln_1(x))
|
75 |
+
x = x + self.mlp(self.ln_2(x))
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
|
88 |
+
class GPT(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
|
94 |
+
self.transformer = nn.ModuleDict(dict(
|
95 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
96 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
97 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
|
102 |
+
# weight sharing
|
103 |
+
self.transformer.wte.weight = self.lm_head.weight
|
104 |
+
|
105 |
+
# weight initialization
|
106 |
+
self.apply(self._init_weights)
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
std = 0.02
|
111 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
113 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
114 |
+
if module.bias is not None:
|
115 |
+
torch.nn.init.zeros_(module.bias)
|
116 |
+
elif isinstance(module, nn.Embedding):
|
117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
# idx is of shape (B, T)
|
123 |
+
B, T = idx.size()
|
124 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
125 |
+
# forward the token and posisition embeddings
|
126 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
127 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
128 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
129 |
+
x = tok_emb + pos_emb
|
130 |
+
# forward the blocks of the transformer
|
131 |
+
for block in self.transformer.h:
|
132 |
+
x = block(x)
|
133 |
+
# forward the final layernorm and the classifier
|
134 |
+
x = self.transformer.ln_f(x)
|
135 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
136 |
+
loss = None
|
137 |
+
if targets is not None:
|
138 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
139 |
+
return logits, loss
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def from_pretrained(cls, model_type):
|
143 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
144 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
145 |
+
from transformers import GPT2LMHeadModel
|
146 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
147 |
+
|
148 |
+
# n_layer, n_head and n_embd are determined from model_type
|
149 |
+
config_args = {
|
150 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
151 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
152 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
153 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
154 |
+
}[model_type]
|
155 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
156 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
157 |
+
# create a from-scratch initialized minGPT model
|
158 |
+
config = GPTConfig(**config_args)
|
159 |
+
model = GPT(config)
|
160 |
+
sd = model.state_dict()
|
161 |
+
sd_keys = sd.keys()
|
162 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
163 |
+
|
164 |
+
# init a huggingface/transformers model
|
165 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
166 |
+
sd_hf = model_hf.state_dict()
|
167 |
+
|
168 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
169 |
+
sd_keys_hf = sd_hf.keys()
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
172 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
173 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
174 |
+
# this means that we have to transpose these weights when we import them
|
175 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
176 |
+
for k in sd_keys_hf:
|
177 |
+
if any(k.endswith(w) for w in transposed):
|
178 |
+
# special treatment for the Conv1D weights we need to transpose
|
179 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
180 |
+
with torch.no_grad():
|
181 |
+
sd[k].copy_(sd_hf[k].t())
|
182 |
+
else:
|
183 |
+
# vanilla copy over the other parameters
|
184 |
+
assert sd_hf[k].shape == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k])
|
187 |
+
|
188 |
+
return model
|
189 |
+
|
190 |
+
# model = GPT.from_pretrained('gpt2')
|
191 |
+
|
192 |
+
device = 'cpu'
|
193 |
+
if torch.cuda.is_available():
|
194 |
+
device = 'cuda'
|
195 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
196 |
+
device = "mps"
|
197 |
+
print(f"using device: {device}")
|
198 |
+
|
199 |
+
# SEED
|
200 |
+
torch.manual_seed(1337)
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
torch.cuda.manual_seed(1337)
|
203 |
+
|
204 |
+
# STOP
|
205 |
+
num_return_sequences = 5
|
206 |
+
max_length = 30
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
import tiktoken
|
211 |
+
|
212 |
+
class DataLoaderLite:
|
213 |
+
def __init__(self, B, T):
|
214 |
+
self.B = B
|
215 |
+
self.T = T
|
216 |
+
|
217 |
+
# at init load tokens from disk and store them in memory
|
218 |
+
with open('input.txt', 'r') as f:
|
219 |
+
text = f.read()
|
220 |
+
enc = tiktoken.get_encoding('gpt2')
|
221 |
+
tokens = enc.encode(text)
|
222 |
+
self.tokens = torch.tensor(tokens)
|
223 |
+
print(f'loaded {len(self.tokens)} tokens')
|
224 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
225 |
+
|
226 |
+
# state
|
227 |
+
self.current_position = 0
|
228 |
+
|
229 |
+
def next_batch(self):
|
230 |
+
B, T = self.B, self.T
|
231 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
232 |
+
x = (buf[:-1]).view(B, T) # inputs
|
233 |
+
y = (buf[1:]).view(B, T) # targets
|
234 |
+
# advance the position in the tensor
|
235 |
+
self.current_position += B*T
|
236 |
+
# if loading the next batch would be out of bounds, reset
|
237 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
238 |
+
self.current_position = 0
|
239 |
+
return x, y
|
240 |
+
|
241 |
+
|
242 |
+
model = GPT(GPTConfig())
|
243 |
+
model.to(device)
|
244 |
+
|
245 |
+
train_loader = DataLoaderLite(B = 4, T = 32)
|
246 |
+
|
247 |
+
# NEW CODE
|
248 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
249 |
+
for i in range(50):
|
250 |
+
x, y = train_loader.next_batch()
|
251 |
+
x, y = x.to(device), y.to(device)
|
252 |
+
optimizer.zero_grad()
|
253 |
+
logits, loss = model(x, y)
|
254 |
+
loss.backward()
|
255 |
+
optimizer.step()
|
256 |
+
print(f'step{i}, loss: {loss.item()}')
|
257 |
+
|
258 |
+
|
259 |
+
print(loss)
|
260 |
+
import sys; sys.exit(0)
|
261 |
+
|
262 |
+
torch.manual_seed(42)
|
263 |
+
torch.cuda.manual_seed(42)
|
264 |
+
while x.size(1) < max_length:
|
265 |
+
# forward the model to get the logits
|
266 |
+
with torch.no_grad():
|
267 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
268 |
+
# take the logits at the last position
|
269 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
270 |
+
# get the probabilities
|
271 |
+
probs = F.softmax(logits, dim=-1)
|
272 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
273 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
274 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
275 |
+
# select a token from the top-k probabilities
|
276 |
+
# note: multinomial does not demand the input to sum to 1
|
277 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
278 |
+
# gather the corresponding indices
|
279 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
280 |
+
# append to the sequence
|
281 |
+
x = torch.cat((x, xcol), dim=1)
|
282 |
+
|
283 |
+
# print the generated text
|
284 |
+
for i in range(num_return_sequences):
|
285 |
+
tokens = x[i, :max_length].tolist()
|
286 |
+
decoded = enc.decode(tokens)
|
287 |
+
print(">", decoded)
|
transformer.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from dataclasses import dataclass
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class Config:
|
8 |
+
vocab_size: int = 50257
|
9 |
+
max_seq_len: int = 2048
|
10 |
+
dim: int = 768
|
11 |
+
num_layers: int = 12
|
12 |
+
num_heads: int = 12
|
13 |
+
dropout: float = 0.1
|
14 |
+
|
15 |
+
class MultiHeadAttention(nn.Module):
|
16 |
+
def __init__(self, config):
|
17 |
+
super().__init__()
|
18 |
+
self.config = config
|
19 |
+
self.n_head = config.num_heads
|
20 |
+
self.n_embd = config.dim
|
21 |
+
|
22 |
+
# Linear projections for Q, K, V
|
23 |
+
self.c_attn = nn.Linear(config.dim, 3 * config.dim) # [n_embd, 3 * n_embd]
|
24 |
+
self.c_proj = nn.Linear(config.dim, config.dim) # [n_embd, n_embd]
|
25 |
+
|
26 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
27 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
B, T, C = x.size() # [B, T, n_embd]
|
31 |
+
|
32 |
+
# Linear projection and split into Q, K, V
|
33 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) # [B, T, n_embd] each
|
34 |
+
|
35 |
+
# Reshape for multi-head attention
|
36 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
|
37 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
|
38 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head]
|
39 |
+
|
40 |
+
# Attention scores
|
41 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / (k.size(-1) ** 0.5)) # [B, n_head, T, T]
|
42 |
+
att = F.softmax(att, dim=-1) # [B, n_head, T, T]
|
43 |
+
att = self.attn_dropout(att) # [B, n_head, T, T]
|
44 |
+
|
45 |
+
# Weighted sum of values
|
46 |
+
y = att @ v # [B, n_head, T, n_embd/n_head]
|
47 |
+
|
48 |
+
# Reshape and project
|
49 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # [B, T, n_embd]
|
50 |
+
y = self.c_proj(y) # [B, T, n_embd]
|
51 |
+
y = self.resid_dropout(y) # [B, T, n_embd]
|
52 |
+
|
53 |
+
return y
|
54 |
+
|
55 |
+
class FeedForward(nn.Module):
|
56 |
+
def __init__(self, config):
|
57 |
+
super().__init__()
|
58 |
+
self.c_fc = nn.Linear(config.dim, 4 * config.dim) # [n_embd, 4 * n_embd]
|
59 |
+
self.c_proj = nn.Linear(4 * config.dim, config.dim) # [4 * n_embd, n_embd]
|
60 |
+
self.dropout = nn.Dropout(config.dropout)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
x = self.c_fc(x) # [B, T, 4 * n_embd]
|
64 |
+
x = F.gelu(x) # [B, T, 4 * n_embd]
|
65 |
+
x = self.c_proj(x) # [B, T, n_embd]
|
66 |
+
x = self.dropout(x) # [B, T, n_embd]
|
67 |
+
return x
|
68 |
+
|
69 |
+
class TransformerBlock(nn.Module):
|
70 |
+
def __init__(self, config):
|
71 |
+
super().__init__()
|
72 |
+
self.ln_1 = nn.LayerNorm(config.dim) # [n_embd]
|
73 |
+
self.attn = MultiHeadAttention(config)
|
74 |
+
self.ln_2 = nn.LayerNorm(config.dim) # [n_embd]
|
75 |
+
self.mlp = FeedForward(config)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
x = x + self.attn(self.ln_1(x)) # [B, T, n_embd]
|
79 |
+
x = x + self.mlp(self.ln_2(x)) # [B, T, n_embd]
|
80 |
+
return x
|
81 |
+
|
82 |
+
class DecoderOnlyTransformer(nn.Module):
|
83 |
+
def __init__(self, config):
|
84 |
+
super().__init__()
|
85 |
+
self.config = config
|
86 |
+
self.wte = nn.Embedding(config.vocab_size, config.dim) # [vocab_size, n_embd]
|
87 |
+
self.wpe = nn.Embedding(config.max_seq_len, config.dim) # [max_seq_len, n_embd]
|
88 |
+
self.drop = nn.Dropout(config.dropout)
|
89 |
+
self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_layers)])
|
90 |
+
self.ln_f = nn.LayerNorm(config.dim) # [n_embd]
|
91 |
+
self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False) # [n_embd, vocab_size]
|
92 |
+
|
93 |
+
self.apply(self._init_weights)
|
94 |
+
|
95 |
+
def _init_weights(self, module):
|
96 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
97 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
98 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
99 |
+
module.bias.data.zero_()
|
100 |
+
elif isinstance(module, nn.LayerNorm):
|
101 |
+
module.bias.data.zero_()
|
102 |
+
module.weight.data.fill_(1.0)
|
103 |
+
|
104 |
+
def forward(self, idx):
|
105 |
+
B, T = idx.size() # [B, T]
|
106 |
+
|
107 |
+
# Positional embeddings
|
108 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device).unsqueeze(0) # [1, T]
|
109 |
+
|
110 |
+
# Token and position embeddings
|
111 |
+
tok_emb = self.wte(idx) # [B, T, n_embd]
|
112 |
+
pos_emb = self.wpe(pos) # [1, T, n_embd]
|
113 |
+
|
114 |
+
# Combine embeddings and apply dropout
|
115 |
+
x = self.drop(tok_emb + pos_emb) # [B, T, n_embd]
|
116 |
+
|
117 |
+
# Transformer blocks
|
118 |
+
for block in self.blocks:
|
119 |
+
x = block(x) # [B, T, n_embd]
|
120 |
+
|
121 |
+
# Final layer norm and linear projection
|
122 |
+
x = self.ln_f(x) # [B, T, n_embd]
|
123 |
+
logits = self.lm_head(x) # [B, T, vocab_size]
|
124 |
+
|
125 |
+
return logits
|