import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass @dataclass class Config: vocab_size: int = 50257 max_seq_len: int = 2048 dim: int = 768 num_layers: int = 12 num_heads: int = 12 dropout: float = 0.1 class MultiHeadAttention(nn.Module): def __init__(self, config): super().__init__() self.config = config self.n_head = config.num_heads self.n_embd = config.dim # Linear projections for Q, K, V self.c_attn = nn.Linear(config.dim, 3 * config.dim) # [n_embd, 3 * n_embd] self.c_proj = nn.Linear(config.dim, config.dim) # [n_embd, n_embd] self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) def forward(self, x): B, T, C = x.size() # [B, T, n_embd] # Linear projection and split into Q, K, V q, k, v = self.c_attn(x).split(self.n_embd, dim=2) # [B, T, n_embd] each # Reshape for multi-head attention k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head] q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head] v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # [B, n_head, T, n_embd/n_head] # Attention scores att = (q @ k.transpose(-2, -1)) * (1.0 / (k.size(-1) ** 0.5)) # [B, n_head, T, T] att = F.softmax(att, dim=-1) # [B, n_head, T, T] att = self.attn_dropout(att) # [B, n_head, T, T] # Weighted sum of values y = att @ v # [B, n_head, T, n_embd/n_head] # Reshape and project y = y.transpose(1, 2).contiguous().view(B, T, C) # [B, T, n_embd] y = self.c_proj(y) # [B, T, n_embd] y = self.resid_dropout(y) # [B, T, n_embd] return y class FeedForward(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.dim, 4 * config.dim) # [n_embd, 4 * n_embd] self.c_proj = nn.Linear(4 * config.dim, config.dim) # [4 * n_embd, n_embd] self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) # [B, T, 4 * n_embd] x = F.gelu(x) # [B, T, 4 * n_embd] x = self.c_proj(x) # [B, T, n_embd] x = self.dropout(x) # [B, T, n_embd] return x class TransformerBlock(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.dim) # [n_embd] self.attn = MultiHeadAttention(config) self.ln_2 = nn.LayerNorm(config.dim) # [n_embd] self.mlp = FeedForward(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) # [B, T, n_embd] x = x + self.mlp(self.ln_2(x)) # [B, T, n_embd] return x class DecoderOnlyTransformer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.wte = nn.Embedding(config.vocab_size, config.dim) # [vocab_size, n_embd] self.wpe = nn.Embedding(config.max_seq_len, config.dim) # [max_seq_len, n_embd] self.drop = nn.Dropout(config.dropout) self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_layers)]) self.ln_f = nn.LayerNorm(config.dim) # [n_embd] self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False) # [n_embd, vocab_size] self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, idx): B, T = idx.size() # [B, T] # Positional embeddings pos = torch.arange(0, T, dtype=torch.long, device=idx.device).unsqueeze(0) # [1, T] # Token and position embeddings tok_emb = self.wte(idx) # [B, T, n_embd] pos_emb = self.wpe(pos) # [1, T, n_embd] # Combine embeddings and apply dropout x = self.drop(tok_emb + pos_emb) # [B, T, n_embd] # Transformer blocks for block in self.blocks: x = block(x) # [B, T, n_embd] # Final layer norm and linear projection x = self.ln_f(x) # [B, T, n_embd] logits = self.lm_head(x) # [B, T, vocab_size] return logits