|
import gradio as gr |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" |
|
ADAPTER_REPO = "cheberle/autotrain-35swc-b4r9z" |
|
|
|
|
|
peft_config = PeftConfig.from_pretrained(ADAPTER_REPO) |
|
print("PEFT Base Model:", peft_config.base_model_name_or_path) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
revision="4831ee1375be5b4ff5a4abf7984e13628db44e35", |
|
ignore_mismatched_sizes=True, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
|
|
|
|
model = PeftModel.from_pretrained( |
|
base_model, |
|
ADAPTER_REPO, |
|
ignore_mismatched_sizes=True, |
|
) |
|
|
|
def classify_food(text): |
|
""" |
|
Classify or extract food-related terms from the input text. |
|
""" |
|
prompt = f"Below is some text. Please identify and classify food-related terms.\nText: {text}\nFood classification or extraction:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=64, |
|
temperature=0.7, |
|
top_p=0.9, |
|
) |
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return answer |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Qwen + LoRA Adapter: Food Classification/Extraction Demo") |
|
input_box = gr.Textbox(lines=3, label="Enter text containing food items") |
|
output_box = gr.Textbox(lines=3, label="Model's classification or extraction output") |
|
|
|
classify_btn = gr.Button("Analyze Food Terms") |
|
classify_btn.click(fn=classify_food, inputs=input_box, outputs=output_box) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |