cheberle commited on
Commit
3cd2ead
·
1 Parent(s): 24e4297
Files changed (1) hide show
  1. app.py +16 -15
app.py CHANGED
@@ -1,36 +1,37 @@
1
  from transformers import AutoModelForCausalLM, AutoTokenizer
2
- import gradio as gr
3
 
4
- # Define the model paths
5
  base_model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
6
  fine_tuned_model_name = "cheberle/autotrain-35swc-b4r9z"
7
 
8
  # Load the tokenizer
9
- tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
10
 
11
- # Load the model
12
  model = AutoModelForCausalLM.from_pretrained(
13
  fine_tuned_model_name,
14
- device_map="auto", # Auto-distributes model across devices
15
- torch_dtype="auto", # Matches model precision
 
16
  )
17
 
18
- # Define the chat function
19
  def chat(input_text):
20
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") # Move input to GPU
21
- output = model.generate(input_ids, max_length=100)
22
- response = tokenizer.decode(output[0], skip_special_tokens=True)
23
  return response
24
 
25
- # Create a Gradio interface
 
 
26
  interface = gr.Interface(
27
  fn=chat,
28
- inputs=gr.Textbox(lines=2, placeholder="Type your input here..."),
29
  outputs="text",
30
- title="Chat with DeepSeek-AutoTrain Model",
31
- description="Fine-tuned version of DeepSeek-R1-Distill-Qwen-7B. Ask me anything!",
32
  )
33
 
34
- # Launch the interface
35
  if __name__ == "__main__":
36
  interface.launch()
 
1
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
2
 
3
+ # Specify the model paths
4
  base_model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
5
  fine_tuned_model_name = "cheberle/autotrain-35swc-b4r9z"
6
 
7
  # Load the tokenizer
8
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
9
 
10
+ # Load the base model with fine-tuned weights
11
  model = AutoModelForCausalLM.from_pretrained(
12
  fine_tuned_model_name,
13
+ device_map="auto",
14
+ torch_dtype="auto",
15
+ trust_remote_code=True
16
  )
17
 
18
+ # Define a simple function for chat
19
  def chat(input_text):
20
+ inputs = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
21
+ outputs = model.generate(inputs, max_length=100, temperature=0.7)
22
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
  return response
24
 
25
+ # Gradio UI
26
+ import gradio as gr
27
+
28
  interface = gr.Interface(
29
  fn=chat,
30
+ inputs=gr.Textbox(lines=2, placeholder="Type your message here..."),
31
  outputs="text",
32
+ title="Chat with DeepSeek Fine-tuned Model",
33
+ description="This is a fine-tuned version of the DeepSeek R1 Distill Qwen-7B model. Ask me anything!"
34
  )
35
 
 
36
  if __name__ == "__main__":
37
  interface.launch()