app.py
CHANGED
@@ -12,7 +12,7 @@ peft_config = PeftConfig.from_pretrained(ADAPTER_REPO)
|
|
12 |
print("PEFT Base Model:", peft_config.base_model_name_or_path)
|
13 |
|
14 |
# 2. Load the tokenizer & base model
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
16 |
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
BASE_MODEL,
|
18 |
revision="4831ee1375be5b4ff5a4abf7984e13628db44e35",
|
@@ -30,9 +30,9 @@ model = PeftModel.from_pretrained(
|
|
30 |
|
31 |
def extract_food_term(text):
|
32 |
"""
|
33 |
-
Extract or simplify a food term to a single word or best descriptor.
|
34 |
"""
|
35 |
-
prompt = f"
|
36 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
37 |
with torch.no_grad():
|
38 |
outputs = model.generate(
|
@@ -48,11 +48,11 @@ def extract_food_term(text):
|
|
48 |
return answer
|
49 |
|
50 |
with gr.Blocks() as demo:
|
51 |
-
gr.Markdown("## Qwen + LoRA Adapter:
|
52 |
-
input_box = gr.Textbox(lines=1, label="
|
53 |
-
output_box = gr.Textbox(lines=1, label="
|
54 |
|
55 |
-
extract_btn = gr.Button("
|
56 |
extract_btn.click(fn=extract_food_term, inputs=input_box, outputs=output_box)
|
57 |
|
58 |
if __name__ == "__main__":
|
|
|
12 |
print("PEFT Base Model:", peft_config.base_model_name_or_path)
|
13 |
|
14 |
# 2. Load the tokenizer & base model
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True, language='de')
|
16 |
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
BASE_MODEL,
|
18 |
revision="4831ee1375be5b4ff5a4abf7984e13628db44e35",
|
|
|
30 |
|
31 |
def extract_food_term(text):
|
32 |
"""
|
33 |
+
Extract or simplify a German food term to a single word or best descriptor.
|
34 |
"""
|
35 |
+
prompt = f"Extrahiere das beste ein Wort oder den Begriff, der dieses Nahrungsmittel beschreibt:\nInput: {text}\nOutput:"
|
36 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
37 |
with torch.no_grad():
|
38 |
outputs = model.generate(
|
|
|
48 |
return answer
|
49 |
|
50 |
with gr.Blocks() as demo:
|
51 |
+
gr.Markdown("## Qwen + LoRA Adapter: Lebensmittelbegriffserkennung Demo")
|
52 |
+
input_box = gr.Textbox(lines=1, label="Geben Sie ein Nahrungsmittel ein (z.B., 'Blaubeertorte')")
|
53 |
+
output_box = gr.Textbox(lines=1, label="Beste ein Wort-Beschreibung")
|
54 |
|
55 |
+
extract_btn = gr.Button("Begriff extrahieren")
|
56 |
extract_btn.click(fn=extract_food_term, inputs=input_box, outputs=output_box)
|
57 |
|
58 |
if __name__ == "__main__":
|