cheberle commited on
Commit
9989364
·
1 Parent(s): f3d041b
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -1,20 +1,29 @@
1
  import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
3
 
4
- # Load the model and tokenizer with `trust_remote_code=True`
 
 
 
 
 
 
 
5
  model_name = "deepseek-ai/DeepSeek-R1"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
7
- model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
 
8
 
9
  def classify_text(input_text):
10
- # Tokenize the input
11
  inputs = tokenizer(input_text, return_tensors="pt")
12
- # Get predictions
13
  outputs = model(**inputs)
14
  probabilities = outputs.logits.softmax(dim=-1).detach().numpy()
15
  return {f"Class {i}": prob for i, prob in enumerate(probabilities[0])}
16
 
17
- # Create the Gradio interface
18
  interface = gr.Interface(
19
  fn=classify_text,
20
  inputs=gr.Textbox(label="Enter Text"),
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer
3
+ from transformers.utils import logging
4
 
5
+ # Enable logging to see debug messages
6
+ logging.set_verbosity_info()
7
+
8
+ # Import custom configuration and model classes
9
+ from transformers_modules.deepseek_ai.DeepSeek_R1.configuration_deepseek import DeepseekV3Config
10
+ from transformers_modules.deepseek_ai.DeepSeek_R1.modeling_deepseek import DeepseekV3Model
11
+
12
+ # Load model and tokenizer
13
  model_name = "deepseek-ai/DeepSeek-R1"
14
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
15
+ config = DeepseekV3Config.from_pretrained(model_name, trust_remote_code=True)
16
+ model = DeepseekV3Model.from_pretrained(model_name, config=config, trust_remote_code=True)
17
 
18
  def classify_text(input_text):
19
+ # Tokenize input
20
  inputs = tokenizer(input_text, return_tensors="pt")
21
+ # Get model output
22
  outputs = model(**inputs)
23
  probabilities = outputs.logits.softmax(dim=-1).detach().numpy()
24
  return {f"Class {i}": prob for i, prob in enumerate(probabilities[0])}
25
 
26
+ # Create Gradio interface
27
  interface = gr.Interface(
28
  fn=classify_text,
29
  inputs=gr.Textbox(label="Enter Text"),