Spaces:
Running
on
Zero
Running
on
Zero
import base64 | |
import hashlib | |
import io | |
import os | |
from pathlib import Path | |
from threading import Thread | |
from typing import Iterator, Optional, List, Union | |
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image | |
from pydantic import BaseModel | |
from qwen_vl_utils import process_vision_info | |
from swift.llm import ( | |
ModelType, | |
get_model_tokenizer, | |
get_default_template_type, | |
get_template, | |
inference, | |
inference_stream, | |
) | |
from transformers import ( | |
Qwen2VLForConditionalGeneration, | |
PreTrainedTokenizer, | |
Qwen2VLProcessor, | |
TextIteratorStreamer, | |
AutoTokenizer, | |
) | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths | |
This Space demonstrates the reasoning paths optimization (RPO) framework with a Llama 3 model with 8B parameters fine-tuned for math reasoning. Feel free to play with it, or duplicate to run generations without a queue! | |
🔎 For more details about the RPO training framework, check out the [paper](https://arxiv.org/abs/2410.10858) or [code](https://github.com/DAMO-NLP-SG/reasoning-paths-optimization). | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
As a derivate work of [Llama-3-8b-chat](https://huggingface.co/meta-llama/Meta-Llama-3-8B) by Meta, | |
this demo is governed by the original [license](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE) and [acceptable use policy](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/USE_POLICY.md). | |
""" | |
def convert_image_to_text(image: Image) -> str: | |
# This is also how OpenAI encodes images: https://platform.openai.com/docs/guides/vision | |
with io.BytesIO() as output: | |
image.save(output, format="PNG") | |
data = output.getvalue() | |
return base64.b64encode(data).decode("utf-8") | |
def convert_text_to_image(text: str) -> Image: | |
data = base64.b64decode(text.encode("utf-8")) | |
return Image.open(io.BytesIO(data)) | |
def save_image(image: Image.Image, folder: str) -> str: | |
image_hash = hashlib.md5(image.tobytes()).hexdigest() | |
path = Path(folder, f"{image_hash}.png") | |
path.parent.mkdir(exist_ok=True, parents=True) | |
if not path.exists(): | |
image.save(path) | |
return str(path) | |
def resize_image(image: Image.Image, max_size: int) -> Image.Image: | |
# Same as modeling.py resize_image | |
width, height = image.size | |
if width <= max_size and height <= max_size: | |
return image | |
if width > height: | |
new_width = max_size | |
new_height = round(height * max_size / width) | |
else: | |
new_height = max_size | |
new_width = round(width * max_size / height) | |
return image.resize((new_width, new_height), Image.LANCZOS) | |
class EvalModel(BaseModel, arbitrary_types_allowed=True): | |
engine: str | |
timeout: int = 60 | |
temperature: float = 0.0 | |
max_output_tokens: int = 512 | |
def run(self, inputs: List[Union[str, Image.Image]]) -> str: | |
raise NotImplementedError | |
def run_many(self, inputs: List[Union[str, Image.Image]], num: int) -> List[str]: | |
raise NotImplementedError | |
class SwiftQwenModel(EvalModel): | |
# https://github.com/modelscope/ms-swift/blob/main/docs/source_en/Multi-Modal/qwen2-vl-best-practice.md | |
path: str = "" | |
model: Optional[Qwen2VLForConditionalGeneration] = None | |
tokenizer: Optional[PreTrainedTokenizer] = None | |
engine: str = ModelType.qwen2_vl_7b_instruct | |
image_size: int = 768 | |
image_dir: str = "data/qwen_images" | |
def load(self): | |
if self.model is None or self.tokenizer is None: | |
self.model, self.tokenizer = get_model_tokenizer( | |
self.engine, | |
torch.bfloat16, | |
model_kwargs={"device_map": "auto"}, | |
model_id_or_path=self.path or None, | |
) | |
def run(self, inputs: List[Union[str, Image.Image]]) -> str: | |
self.load() | |
template_type = get_default_template_type(self.engine) | |
self.model.generation_config.max_new_tokens = self.max_output_tokens | |
template = get_template(template_type, self.tokenizer) | |
text = "\n\n".join([x for x in inputs if isinstance(x, str)]) | |
content = [] | |
for x in inputs: | |
if isinstance(x, Image.Image): | |
path = save_image(resize_image(x, self.image_size), self.image_dir) | |
content.append(f"<img>{path}</img>") | |
content.append(text) | |
query = "".join(content) | |
response, history = inference(self.model, template, query) | |
return response | |
def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]: | |
self.load() | |
template_type = get_default_template_type(self.engine) | |
self.model.generation_config.max_new_tokens = self.max_output_tokens | |
template = get_template(template_type, self.tokenizer) | |
text = "\n\n".join([x for x in inputs if isinstance(x, str)]) | |
content = [] | |
for x in inputs: | |
if isinstance(x, Image.Image): | |
path = save_image(resize_image(x, self.image_size), self.image_dir) | |
content.append(f"<img>{path}</img>") | |
content.append(text) | |
query = "".join(content) | |
generator = inference_stream(self.model, template, query) | |
print_idx = 0 | |
print(f"query: {query}\nresponse: ", end="") | |
for response, history in generator: | |
delta = response[print_idx:] | |
print(delta, end="", flush=True) | |
print_idx = len(response) | |
yield delta | |
class QwenModel(EvalModel): | |
path: str = "models/qwen" | |
engine: str = "Qwen/Qwen2-VL-7B-Instruct" | |
model: Optional[Qwen2VLForConditionalGeneration] = None | |
processor: Optional[Qwen2VLProcessor] = None | |
tokenizer: Optional[AutoTokenizer] = None | |
device: str = "cuda" | |
image_size: int = 768 | |
lora_path: str = "" | |
def load(self): | |
if self.model is None: | |
path = self.path if os.path.exists(self.path) else self.engine | |
print(dict(load_path=path)) | |
# noinspection PyTypeChecker | |
self.model = Qwen2VLForConditionalGeneration.from_pretrained( | |
path, torch_dtype="auto", device_map="auto" | |
) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.engine) | |
if self.lora_path: | |
print("Loading LORA from", self.lora_path) | |
self.model.load_adapter(self.lora_path) | |
self.model = self.model.to(self.device).eval() | |
self.processor = Qwen2VLProcessor.from_pretrained(self.engine) | |
torch.manual_seed(0) | |
torch.cuda.manual_seed_all(0) | |
def make_messages(self, inputs: List[Union[str, Image.Image]]) -> List[dict]: | |
text = "\n\n".join([x for x in inputs if isinstance(x, str)]) | |
content = [ | |
dict( | |
type="image", | |
image=f"data:image;base64,{convert_image_to_text(resize_image(x, self.image_size))}", | |
) | |
for x in inputs | |
if isinstance(x, Image.Image) | |
] | |
content.append(dict(type="text", text=text)) | |
return [dict(role="user", content=content)] | |
def run(self, inputs: List[Union[str, Image.Image]]) -> str: | |
self.load() | |
messages = self.make_messages(inputs) | |
text = self.processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
# noinspection PyTypeChecker | |
model_inputs = self.processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to(self.device) | |
with torch.inference_mode(): | |
generated_ids = self.model.generate( | |
**model_inputs, max_new_tokens=self.max_output_tokens | |
) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] | |
for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
output_text = self.processor.batch_decode( | |
generated_ids_trimmed, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False, | |
) | |
return output_text[0] | |
def run_stream(self, inputs: List[Union[str, Image.Image]]) -> Iterator[str]: | |
self.load() | |
messages = self.make_messages(inputs) | |
text = self.processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
# noinspection PyTypeChecker | |
model_inputs = self.processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to(self.device) | |
streamer = TextIteratorStreamer( | |
self.tokenizer, | |
timeout=10.0, | |
skip_prompt=True, | |
skip_special_tokens=True, | |
) | |
generate_kwargs = dict( | |
**model_inputs, | |
streamer=streamer, | |
max_new_tokens=self.max_output_tokens, | |
) | |
t = Thread(target=self.model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model = QwenModel() | |
model.load() | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
for text in model.run_stream([message]): | |
yield text | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
[ | |
"Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?" | |
], | |
[ | |
"Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?" | |
], | |
[ | |
"Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?" | |
], | |
], | |
cache_examples=False, | |
type="messages", | |
) | |
with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", elem_id="duplicate-button" | |
) | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |