Spaces:
Runtime error
Runtime error
File size: 1,359 Bytes
00a31fe dc7ce01 00a31fe 6ef6e5f 00a31fe 9388f53 00a31fe 9388f53 00a31fe 6ef6e5f b0f59a3 6ef6e5f b0f59a3 6ef6e5f 00a31fe 6ef6e5f 00a31fe 6ef6e5f 00a31fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import os
from typing import Any, Dict
from transformers import (Pipeline, T5ForConditionalGeneration, T5Tokenizer,
pipeline)
auth_token = os.environ.get("CLARIN_KNEXT")
DEFAULT_DST_INPUTS: Dict[str, str] = {
"polish": (
"[U] Chciałbym zarezerwować stolik na 4 osoby na piątek o godzinie 18:30. "
"[Dziedzina] Restauracje: Popularna usługa wyszukiwania i rezerwacji restauracji "
"[Atrybut] Czas: Wstępny czas rezerwacji restauracji"
),
"english": (
"[U] I want to book a table for 4 people on Friday, 6:30 pm. "
"[Domain] Restaurants: A popular restaurant search and reservation service "
"[Slot] Time: Tentative time of restaurant reservation"
),
}
DST_MODELS: Dict[str, Dict[str, Any]] = {
"plt5-large-poquad-dst-v2": {
"model": T5ForConditionalGeneration.from_pretrained("clarin-knext/plt5-large-poquad-dst-v2", use_auth_token=auth_token),
"tokenizer": T5Tokenizer.from_pretrained("clarin-knext/plt5-large-poquad-dst-v2", use_auth_token=auth_token),
"default_input": DEFAULT_DST_INPUTS["polish"],
}
}
PIPELINES: Dict[str, Pipeline] = {
model_name: pipeline(
"text2text-generation", model=DST_MODELS[model_name]["model"], tokenizer=DST_MODELS[model_name]["tokenizer"]
)
for model_name in DST_MODELS
}
|