Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,197 Bytes
dbf5021 072d8d2 dbf5021 98e453d dbf5021 072d8d2 98e453d 072d8d2 dbf5021 072d8d2 dbf5021 072d8d2 dbf5021 072d8d2 dbf5021 6bfc071 dbf5021 6bfc071 dbf5021 6bfc071 072d8d2 6bfc071 072d8d2 dbf5021 072d8d2 dbf5021 072d8d2 6bfc071 072d8d2 dbf5021 072d8d2 dbf5021 6bfc071 dbf5021 6bfc071 dbf5021 98e453d dbf5021 6bfc071 dbf5021 98e453d dbf5021 98e453d dbf5021 072d8d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import cv2
import numpy as np
import torch
import gradio as gr
import random
import spaces
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline
from diffusers.utils import load_image
DESCRIPTION='''
This uses code lifted almost verbatim from
[Outpainting II - Differential Diffusion](https://huggingface.co/blog/OzzyGT/outpainting-differential-diffusion). This only works well on blurry edges.
'''
ARTICLE='''
The [example image](https://commons.wikimedia.org/wiki/File:Coucang.jpg) is by Aprisonsan
and licensed under CC-BY-SA 4.0 International.
'''
xlp_kwargs = {
'custom_pipeline': 'pipeline_stable_diffusion_xl_differential_img2img'
}
if torch.cuda.is_available():
device = 'cuda'
device_dtype = torch.float16
xlp_kwargs['variant'] = 'fp16'
else:
device = 'cpu'
device_dtype = torch.float32
DESCRIPTION+='''
This Space appears to be running on a CPU; it will take hours to get results. You may [duplicate this space](https://huggingface.co/spaces/clinteroni/outpainting-demo?duplicate=true) and pay for an upgraded runtime instead.
'''
xlp_kwargs['torch_dtype'] = device_dtype
def merge_images(original, new_image, offset, direction):
if direction in ["left", "right"]:
merged_image = np.zeros(
(original.shape[0], original.shape[1] + offset, 3), dtype=np.uint8)
elif direction in ["top", "bottom"]:
merged_image = np.zeros(
(original.shape[0] + offset, original.shape[1], 3), dtype=np.uint8)
if direction == "left":
merged_image[:, offset:] = original
merged_image[:, : new_image.shape[1]] = new_image
elif direction == "right":
merged_image[:, : original.shape[1]] = original
merged_image[:, original.shape[1] + offset -
new_image.shape[1]: original.shape[1] + offset] = new_image
elif direction == "top":
merged_image[offset:, :] = original
merged_image[: new_image.shape[0], :] = new_image
elif direction == "bottom":
merged_image[: original.shape[0], :] = original
merged_image[original.shape[0] + offset - new_image.shape[0]:original.shape[0] + offset, :] = new_image
return merged_image
def slice_image(image):
height, width, _ = image.shape
slice_size = min(width // 2, height // 3)
slices = []
for h in range(3):
for w in range(2):
left = w * slice_size
upper = h * slice_size
right = left + slice_size
lower = upper + slice_size
if w == 1 and right > width:
left -= right - width
right = width
if h == 2 and lower > height:
upper -= lower - height
lower = height
slice = image[upper:lower, left:right]
slices.append(slice)
return slices
def process_image(
image,
fill_color=(0, 0, 0),
mask_offset=50,
blur_radius=500,
expand_pixels=256,
direction="left",
inpaint_mask_color=50,
max_size=1024,
):
height, width = image.shape[:2]
new_height = height + \
(expand_pixels if direction in ["top", "bottom"] else 0)
new_width = width + \
(expand_pixels if direction in ["left", "right"] else 0)
if new_height > max_size:
# If so, crop the image from the opposite side
if direction == "top":
image = image[:max_size, :]
elif direction == "bottom":
image = image[new_height - max_size:, :]
new_height = max_size
if new_width > max_size:
# If so, crop the image from the opposite side
if direction == "left":
image = image[:, :max_size]
elif direction == "right":
image = image[:, new_width - max_size:]
new_width = max_size
height, width = image.shape[:2]
new_image = np.full((new_height, new_width, 3), fill_color, dtype=np.uint8)
mask = np.full_like(new_image, 255, dtype=np.uint8)
inpaint_mask = np.full_like(new_image, 0, dtype=np.uint8)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
inpaint_mask = cv2.cvtColor(inpaint_mask, cv2.COLOR_BGR2GRAY)
if direction == "left":
new_image[:, expand_pixels:] = image[:, : max_size - expand_pixels]
mask[:, : expand_pixels + mask_offset] = inpaint_mask_color
inpaint_mask[:, :expand_pixels] = 255
elif direction == "right":
new_image[:, :width] = image
mask[:, width - mask_offset:] = inpaint_mask_color
inpaint_mask[:, width:] = 255
elif direction == "top":
new_image[expand_pixels:, :] = image[: max_size - expand_pixels, :]
mask[: expand_pixels + mask_offset, :] = inpaint_mask_color
inpaint_mask[:expand_pixels, :] = 255
elif direction == "bottom":
new_image[:height, :] = image
mask[height - mask_offset:, :] = inpaint_mask_color
inpaint_mask[height:, :] = 255
# mask blur
if blur_radius % 2 == 0:
blur_radius += 1
mask = cv2.GaussianBlur(mask, (blur_radius, blur_radius), 0)
# telea inpaint
_, mask_np = cv2.threshold(
inpaint_mask, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
inpaint = cv2.inpaint(new_image, mask_np, 3, cv2.INPAINT_TELEA)
# convert image to tensor
inpaint = cv2.cvtColor(inpaint, cv2.COLOR_BGR2RGB)
inpaint = torch.from_numpy(inpaint).permute(2, 0, 1).float()
inpaint = inpaint / 127.5 - 1
inpaint = inpaint.unsqueeze(0).to(device)
# convert mask to tensor
mask = torch.from_numpy(mask)
mask = mask.unsqueeze(0).float() / 255.0
mask = mask.to(device)
return inpaint, mask
def image_resize(image, new_size=1024):
height, width = image.shape[:2]
aspect_ratio = width / height
new_width = new_size
new_height = new_size
if aspect_ratio != 1:
if width > height:
new_height = int(new_size / aspect_ratio)
else:
new_width = int(new_size * aspect_ratio)
image = cv2.resize(image, (new_width, new_height),
interpolation=cv2.INTER_LANCZOS4)
return image
@spaces.GPU
def outpaint(pil_image, direction='right', times_to_expand=4, guidance_scale=4.0, blur_radius=500):
if torch.cuda.is_available():
torch.cuda.empty_cache()
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
**xlp_kwargs
).to(device)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config, use_karras_sigmas=True)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=[
"ip-adapter-plus_sdxl_vit-h.safetensors",
],
image_encoder_folder="models/image_encoder",
)
pipeline.set_ip_adapter_scale(0.1)
def generate_image(prompt, negative_prompt, image, mask, ip_adapter_image, seed: int = None):
if seed is None:
seed = random.randint(0, 2**32 - 1)
generator = torch.Generator(device="cpu").manual_seed(seed)
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=1024,
height=1024,
guidance_scale=guidance_scale,
num_inference_steps=25,
original_image=image,
image=image,
strength=1.0,
map=mask,
generator=generator,
ip_adapter_image=[ip_adapter_image],
output_type="np",
).images[0]
image = (image * 255).astype(np.uint8)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
prompt = ""
negative_prompt = ""
inpaint_mask_color = 50 # lighter use more of the Telea inpainting
# I recommend to don't go more than half of the picture so it has context
expand_pixels = 256
original = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
image = image_resize(original)
# image.shape[1] for horizontal, image.shape[0] for vertical
expand_pixels_to_square = 1024 - image.shape[1]
image, mask = process_image(
image, expand_pixels=expand_pixels_to_square, direction=direction, inpaint_mask_color=inpaint_mask_color, blur_radius=blur_radius
)
ip_adapter_image = []
for index, part in enumerate(slice_image(original)):
ip_adapter_image.append(part)
generated = generate_image(
prompt, negative_prompt, image, mask, ip_adapter_image)
final_image = generated
for i in range(times_to_expand):
image, mask = process_image(
final_image, direction=direction, expand_pixels=expand_pixels, inpaint_mask_color=inpaint_mask_color, blur_radius=blur_radius
)
ip_adapter_image = []
for index, part in enumerate(slice_image(generated)):
ip_adapter_image.append(part)
generated = generate_image(
prompt, negative_prompt, image, mask, ip_adapter_image)
final_image = merge_images(final_image, generated, 256, direction)
color_converted = cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)
return color_converted
gradio_app = gr.Interface(
outpaint,
inputs=[
gr.Image(label="Select start image", sources=[
'upload', 'clipboard'], type='pil'),
gr.Radio(["left", "right", "top", 'bottom'], label="Direction",
info="Outward from which edge to paint?", value='right'),
gr.Slider(2, 4, step=1, value=4, label="Times to expand",
info="Choose between 2 and 4"),
gr.Slider(1, 12, step=0.1, value=4, label="Guidance scale",
info="Choose between 1 and 12"),
gr.Slider(250, 500, step=1, value=500, label="Mask blur radius",
info="Choose between 250 and 500"),
],
outputs=[gr.Image(label="Processed Image")],
examples=[
[load_image('examples/Coucang.jpg'), 'right', 4, 5, 500]
],
title="Outpainting with differential diffusion demo",
description=DESCRIPTION,
article=ARTICLE
)
if __name__ == "__main__":
gradio_app.queue(max_size=20).launch()
|