Spaces:
Running
Running
Replicate IR on Unsplash with local download
Browse files- .gitignore +2 -1
- app.py +139 -4
- requirements.txt +6 -3
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
__pycache__
|
|
|
|
1 |
+
__pycache__
|
2 |
+
photos
|
app.py
CHANGED
@@ -1,4 +1,19 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from modeling_hybrid_clip import FlaxHybridCLIP
|
3 |
|
4 |
|
@@ -7,12 +22,132 @@ def get_model():
|
|
7 |
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"""
|
11 |
# CLIP Italian Demo (Flax Community Week)
|
12 |
"""
|
13 |
|
14 |
-
x = st.slider("Select a value")
|
15 |
-
st.write(x, "squared is", x * x)
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from jax import numpy as jnp
|
6 |
+
import json
|
7 |
+
import requests
|
8 |
+
import zipfile
|
9 |
+
import io
|
10 |
+
import natsort
|
11 |
+
from PIL import Image as PilImage
|
12 |
+
|
13 |
+
from torchvision import datasets, transforms
|
14 |
+
from torchvision.transforms import CenterCrop, Normalize, Resize, ToTensor
|
15 |
+
from torchvision.transforms.functional import InterpolationMode
|
16 |
+
from tqdm import tqdm
|
17 |
from modeling_hybrid_clip import FlaxHybridCLIP
|
18 |
|
19 |
|
|
|
22 |
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")
|
23 |
|
24 |
|
25 |
+
@st.cache
|
26 |
+
def download_images():
|
27 |
+
# from sentence_transformers import SentenceTransformer, util
|
28 |
+
img_folder = "photos/"
|
29 |
+
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
|
30 |
+
os.makedirs(img_folder, exist_ok=True)
|
31 |
+
|
32 |
+
photo_filename = "unsplash-25k-photos.zip"
|
33 |
+
if not os.path.exists(photo_filename): # Download dataset if does not exist
|
34 |
+
print(f"Downloading {photo_filename}...")
|
35 |
+
r = requests.get("http://sbert.net/datasets/" + photo_filename, stream=True)
|
36 |
+
z = zipfile.ZipFile(io.BytesIO(r.content))
|
37 |
+
print("Extracting the dataset...")
|
38 |
+
z.extractall(path=img_folder)
|
39 |
+
print("Done.")
|
40 |
+
|
41 |
+
|
42 |
+
@st.cache
|
43 |
+
def get_image_features(model, image_dir):
|
44 |
+
image_size = model.config.vision_config.image_size
|
45 |
+
|
46 |
+
val_preprocess = transforms.Compose(
|
47 |
+
[
|
48 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
49 |
+
CenterCrop(image_size),
|
50 |
+
ToTensor(),
|
51 |
+
Normalize(
|
52 |
+
(0.48145466, 0.4578275, 0.40821073),
|
53 |
+
(0.26862954, 0.26130258, 0.27577711),
|
54 |
+
),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
dataset = CustomDataSet(image_dir, transform=val_preprocess)
|
59 |
+
|
60 |
+
loader = torch.utils.data.DataLoader(
|
61 |
+
dataset,
|
62 |
+
batch_size=256,
|
63 |
+
shuffle=False,
|
64 |
+
num_workers=2,
|
65 |
+
persistent_workers=True,
|
66 |
+
drop_last=False,
|
67 |
+
)
|
68 |
+
|
69 |
+
return precompute_image_features(loader), dataset
|
70 |
+
|
71 |
+
|
72 |
+
class CustomDataSet(torch.utils.data.Dataset):
|
73 |
+
def __init__(self, main_dir, transform):
|
74 |
+
self.main_dir = main_dir
|
75 |
+
self.transform = transform
|
76 |
+
all_imgs = os.listdir(main_dir)
|
77 |
+
self.total_imgs = natsort.natsorted(all_imgs)
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.total_imgs)
|
81 |
+
|
82 |
+
def get_image_name(self, idx):
|
83 |
+
return self.total_imgs[idx]
|
84 |
+
|
85 |
+
def __getitem__(self, idx):
|
86 |
+
img_loc = os.path.join(self.main_dir, self.total_imgs[idx])
|
87 |
+
image = PilImage.open(img_loc).convert("RGB")
|
88 |
+
tensor_image = self.transform(image)
|
89 |
+
return tensor_image
|
90 |
+
|
91 |
+
|
92 |
+
def text_encoder(text, tokenizer):
|
93 |
+
inputs = tokenizer(
|
94 |
+
[text],
|
95 |
+
max_length=96,
|
96 |
+
truncation=True,
|
97 |
+
padding="max_length",
|
98 |
+
return_tensors="np",
|
99 |
+
)
|
100 |
+
embedding = model.get_text_features(inputs["input_ids"], inputs["attention_mask"])[
|
101 |
+
0
|
102 |
+
]
|
103 |
+
embedding /= jnp.linalg.norm(embedding)
|
104 |
+
return jnp.expand_dims(embedding, axis=0)
|
105 |
+
|
106 |
+
|
107 |
+
def precompute_image_features(loader):
|
108 |
+
image_features = []
|
109 |
+
for i, (images) in enumerate(tqdm(loader)):
|
110 |
+
images = images.permute(0, 2, 3, 1).numpy()
|
111 |
+
features = model.get_image_features(
|
112 |
+
images,
|
113 |
+
)
|
114 |
+
features /= jnp.linalg.norm(features, axis=-1, keepdims=True)
|
115 |
+
image_features.extend(features)
|
116 |
+
return jnp.array(image_features)
|
117 |
+
|
118 |
+
|
119 |
+
def find_image(text_query, dataset, tokenizer, image_features, n=1):
|
120 |
+
zeroshot_weights = text_encoder(text_query, tokenizer)
|
121 |
+
zeroshot_weights /= jnp.linalg.norm(zeroshot_weights)
|
122 |
+
distances = jnp.dot(image_features, zeroshot_weights.reshape(-1, 1))
|
123 |
+
file_paths = []
|
124 |
+
for i in range(1, n + 1):
|
125 |
+
idx = jnp.argsort(distances, axis=0)[-i, 0]
|
126 |
+
file_paths.append("photos/" + dataset.get_image_name(idx))
|
127 |
+
return file_paths
|
128 |
+
|
129 |
+
|
130 |
"""
|
131 |
# CLIP Italian Demo (Flax Community Week)
|
132 |
"""
|
133 |
|
|
|
|
|
134 |
|
135 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
136 |
+
|
137 |
+
|
138 |
+
query = st.text_input("Insert a query text")
|
139 |
+
if query:
|
140 |
+
|
141 |
+
with st.spinner("Computing in progress..."):
|
142 |
+
model = get_model()
|
143 |
+
download_images()
|
144 |
+
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
146 |
+
"dbmdz/bert-base-italian-xxl-uncased", cache_dir=None, use_fast=True
|
147 |
+
)
|
148 |
+
|
149 |
+
image_features, dataset = get_image_features(model, "photos")
|
150 |
+
|
151 |
+
image_paths = find_image(query, dataset, tokenizer, image_features, n=3)
|
152 |
+
|
153 |
+
st.image(image_paths)
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
-
jax
|
2 |
-
flax
|
3 |
-
transformers
|
|
|
|
|
|
|
|
1 |
+
jax
|
2 |
+
flax
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
torchvision
|
6 |
+
natsort
|