Spaces:
Sleeping
Sleeping
Rename tools.py to extract_app.py
Browse files- extract_app.py +51 -0
- tools.py +0 -73
extract_app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Imports
|
3 |
+
import asyncio
|
4 |
+
import os
|
5 |
+
import openai
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
+
|
10 |
+
from langchain.chains.openai_functions.extraction import create_extraction_chain_pydantic
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
from langchain.prompts import ChatPromptTemplate
|
13 |
+
from langchain.pydantic_v1 import BaseModel
|
14 |
+
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
15 |
+
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
20 |
+
|
21 |
+
|
22 |
+
# App
|
23 |
+
|
24 |
+
# Pydantic is an easy way to define a schema
|
25 |
+
class Person(BaseModel):
|
26 |
+
"""Information about people to extract."""
|
27 |
+
|
28 |
+
name: str
|
29 |
+
age: Optional[int] = None
|
30 |
+
|
31 |
+
# Main function to extract information
|
32 |
+
def extract_information():
|
33 |
+
# Make sure to use a recent model that supports tools
|
34 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo-1106")
|
35 |
+
|
36 |
+
return create_extraction_chain_pydantic(Person, llm)
|
37 |
+
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
text = "My name is John and I am 20 years old. My name is sally and I am 30 years old."
|
41 |
+
chain = extract_information()
|
42 |
+
print(chain.invoke({"input": text})["text"])
|
43 |
+
|
44 |
+
async def extract_information_async(message: str):
|
45 |
+
return chain.invoke({"input": message})["text"]
|
46 |
+
|
47 |
+
async def main():
|
48 |
+
res = await extract_information_async(text)
|
49 |
+
print(res)
|
50 |
+
|
51 |
+
asyncio.run(main())
|
tools.py
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
import io
|
2 |
-
import os
|
3 |
-
from openai import OpenAI
|
4 |
-
from langchain.tools import StructuredTool, Tool
|
5 |
-
from io import BytesIO
|
6 |
-
import requests
|
7 |
-
import json
|
8 |
-
from io import BytesIO
|
9 |
-
|
10 |
-
import chainlit as cl
|
11 |
-
|
12 |
-
|
13 |
-
def get_image_name():
|
14 |
-
"""
|
15 |
-
We need to keep track of images we generate, so we can reference them later
|
16 |
-
and display them correctly to our users.
|
17 |
-
"""
|
18 |
-
image_count = cl.user_session.get("image_count")
|
19 |
-
if image_count is None:
|
20 |
-
image_count = 0
|
21 |
-
else:
|
22 |
-
image_count += 1
|
23 |
-
|
24 |
-
cl.user_session.set("image_count", image_count)
|
25 |
-
|
26 |
-
return f"image-{image_count}"
|
27 |
-
|
28 |
-
|
29 |
-
def _generate_image(prompt: str):
|
30 |
-
"""
|
31 |
-
This function is used to generate an image from a text prompt using
|
32 |
-
DALL-E 3.
|
33 |
-
|
34 |
-
We use the OpenAI API to generate the image, and then store it in our
|
35 |
-
user session so we can reference it later.
|
36 |
-
"""
|
37 |
-
client = OpenAI()
|
38 |
-
|
39 |
-
response = client.images.generate(
|
40 |
-
model="dall-e-3",
|
41 |
-
prompt=prompt,
|
42 |
-
size="1024x1024",
|
43 |
-
quality="standard",
|
44 |
-
n=1,
|
45 |
-
)
|
46 |
-
|
47 |
-
image_payload = requests.get(response.data[0].url, stream=True)
|
48 |
-
|
49 |
-
image_bytes = BytesIO(image_payload.content)
|
50 |
-
|
51 |
-
print(type(image_bytes))
|
52 |
-
|
53 |
-
name = get_image_name()
|
54 |
-
cl.user_session.set(name, image_bytes.getvalue())
|
55 |
-
cl.user_session.set("generated_image", name)
|
56 |
-
return name
|
57 |
-
|
58 |
-
|
59 |
-
def generate_image(prompt: str):
|
60 |
-
image_name = _generate_image(prompt)
|
61 |
-
return f"Here is {image_name}."
|
62 |
-
|
63 |
-
|
64 |
-
# this is our tool - which is what allows our agent to generate images in the first place!
|
65 |
-
# the `description` field is of utmost imporance as it is what the LLM "brain" uses to determine
|
66 |
-
# which tool to use for a given input.
|
67 |
-
generate_image_format = '{{"prompt": "prompt"}}'
|
68 |
-
generate_image_tool = Tool.from_function(
|
69 |
-
func=generate_image,
|
70 |
-
name="GenerateImage",
|
71 |
-
description=f"Useful to create an image from a text prompt. Input should be a single string strictly in the following JSON format: {generate_image_format}",
|
72 |
-
return_direct=True,
|
73 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|