File size: 20,039 Bytes
558fff7
 
13eeb4f
8ce1c5e
149e201
558fff7
be50c8a
 
8ce1c5e
c4ca994
558fff7
7f44091
8ce1c5e
 
 
 
488f10b
13eeb4f
488f10b
 
 
 
 
558fff7
 
 
488f10b
13eeb4f
488f10b
 
 
 
558fff7
 
 
488f10b
13eeb4f
488f10b
 
 
 
558fff7
 
 
488f10b
558fff7
13eeb4f
488f10b
 
 
 
558fff7
 
 
488f10b
558fff7
13eeb4f
488f10b
 
 
 
558fff7
 
 
488f10b
13eeb4f
488f10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13eeb4f
488f10b
 
 
 
 
 
 
 
 
8ce1c5e
 
488f10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558fff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c52661
 
 
 
 
 
 
558fff7
 
 
 
 
 
 
 
 
be9bc89
5c52661
be9bc89
 
 
558fff7
be9bc89
5c52661
 
558fff7
be9bc89
 
 
558fff7
be9bc89
5c52661
558fff7
 
8ce1c5e
488f10b
 
 
8ce1c5e
be50c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce1c5e
 
 
 
be50c8a
 
 
 
8ce1c5e
be50c8a
488f10b
 
be50c8a
 
 
488f10b
 
8ce1c5e
558fff7
 
149e201
8ce1c5e
558fff7
149e201
13eeb4f
558fff7
8ce1c5e
 
 
 
 
 
 
 
 
 
 
 
 
3ed364c
8ce1c5e
 
 
 
 
 
 
 
5c52661
 
470fd34
 
 
 
 
5c52661
470fd34
 
5c52661
470fd34
 
5c52661
470fd34
5c52661
 
 
 
 
 
 
 
 
 
470fd34
5c52661
 
 
 
 
 
 
 
 
 
 
 
 
be50c8a
5c52661
 
be50c8a
 
 
 
5c52661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
878d5d1
 
 
 
 
 
 
 
 
 
 
 
 
 
5c52661
878d5d1
 
 
 
 
5c52661
878d5d1
470fd34
5c52661
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import numpy as np
from scipy import signal
import math
import matplotlib.pyplot as plt
from huggingface_hub import from_pretrained_keras
import streamlit as st
from elasticity import elasticity

# Needed in requirements.txt for importing to use in the transformers model
import tensorflow


# HELLO HUGGING FACE

########################################################################################################################
# Define the piecewise functions to create each of the possible shapes
def basic_box_array(image_size):
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    # Creates the outside edges of the box
    for i in range(image_size):
        for j in range(image_size):
            if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
                A[i][j] = 1
    return A


def back_slash_array(image_size):
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == j:
                A[i][j] = 1
    return A


def forward_slash_array(image_size):
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == (image_size - 1) - j:
                A[i][j] = 1
    return A


def hot_dog_array(image_size):
    # Places pixels down the vertical axis to split the box
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def hamburger_array(image_size):
    # Places pixels across the horizontal axis to split the box
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def center_array(image_size):
    A = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
            if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
                A[i][j] = 1
            if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
            if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def update_array(array_original, array_new, image_size):
    A = array_original
    for i in range(image_size):
        for j in range(image_size):
            if array_new[i][j] == 1:
                A[i][j] = 1
    return A


def add_pixels(array_original, additional_pixels, image_size):
    # Adds pixels to the thickness of each component of the box
    A = array_original
    A_updated = np.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for dens in range(additional_pixels):
        for i in range(1, image_size - 1):
            for j in range(1, image_size - 1):
                if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
                    A_updated[i][j] = 1
        A = update_array(A, A_updated, image_size)
    return A


########################################################################################################################
# Create the desired shape using the density and thickness
def basic_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def horizontal_vertical_box_split(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box
    # Place pixels across the horizontal and vertical axes to split the box
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def diagonal_box_split(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box

    # Add pixels along the diagonals of the box
    A = update_array(A, back_slash_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)

    # Adds pixels to the thickness of each component of the box
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def back_slash_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def forward_slash_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def hot_dog_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def hamburger_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hamburger_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def forward_slash_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    # A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def back_slash_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    # A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_hot_dog_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    # A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_hamburger_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    # A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def center_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, center_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


########################################################################################################################
# The function to add thickness to struts in an array
def add_thickness(array_original, thickness: int) -> np.ndarray:
    """
    :param array_original: [ndarray] - an array with thickness 1 of any shape type
    :param thickness: [int] - the number of pixels to be activated surrounding the base shape
    :return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated
    based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black)
    """
    A = array_original
    if thickness == 0:  # want an array of all 0's for thickness = 0
        A[A > 0] = 0
    else:
        filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape
        filter = np.zeros((filter_size, filter_size))
        filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1
        filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1
        # The filter is made into a '+' shape using these functions
        convolution = signal.convolve2d(A, filter, mode='same')
        A = np.where(convolution <= 1, convolution, 1)
    return A


# The function to efficiently combine arrays in a list
def combine_arrays(arrays):
    output_array = np.sum(arrays, axis=0)  # Add the list of arrays
    output_array = np.array(output_array > 0, dtype=int)  # Convert all values in array to 1
    return output_array


########################################################################################################################
# Explain the App
st.header("Multi-Lattice Generator Through a VAE Model")
st.write("Shape: the type of shape the lattice will have")
st.write("Density: the pixel intensity of each activated pixel")
st.write("Thickness: the additional pixels added to the base shape")
st.write("Interpolation Length: the number of internal interpolation points that will exist in the interpolation")
########################################################################################################################
# Provide the Options for users to select from
shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]

# Provide User Options
st.header("Option 1: Perform a Linear Interpolation")
# Select Shapes
shape_1 = st.selectbox("Shape 1", shape_options)
shape_2 = st.selectbox("Shape 2", shape_options)

# Select Density
density_1 = st.selectbox("Density 1:", density_options, index=len(density_options)-1)
density_2 = st.selectbox("Density 2:", density_options, index=len(density_options)-1)

# Select Thickness
thickness_1 = st.selectbox("Thickness 1", thickness_options)
thickness_2 = st.selectbox("Thickness 2", thickness_options)

# Select Interpolation Length
interp_length = st.selectbox("Interpolation Length", interpolation_options, index=2)


# Define the function to generate unit cells based on user inputs
def generate_unit_cell(shape, density, thickness):
    return globals()[shape](int(thickness), float(density), 28)


def display_arrays(array1, array2, label_1, label_2):
    # A Function to plot two arrays side by side in streamlit
    # Create two columns
    col1, col2 = st.columns(2)

    # Populate the first column with array1
    col1.header(label_1)
    col1.write(array1)

    # Populate the second column with array2
    col2.header(label_2)
    col2.write(array2)


# Generate the endpoints
number_1 = generate_unit_cell(shape_1, density_1, thickness_1)
number_2 = generate_unit_cell(shape_2, density_2, thickness_2)

# Calculate the elasticity for the shapes:
elasticity_1 = elasticity(number_1)
elasticity_2 = elasticity(number_2)

# Display the endpoints to the user
if st.button("Generate Endpoint Images and Elasticity Tensors"):
    plt.figure(1)
    st.header("Endpoints to be generated:")
    plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1), plt.title("Shape 1:")
    display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2")
    plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1), plt.title("Shape 2:")
    plt.figure(1)
    st.pyplot(plt.figure(1))
########################################################################################################################
# Load the models from existing huggingface model
# Load the encoder model
encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder")

# Load the decoder model
decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder")


########################################################################################################################
# Encode the Desired Endpoints
# resize the array to match the prediction size requirement
number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0)
number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0)

# Determine the latent point that will represent our desired number
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0]

latent_dimensionality = len(latent_point_1)  # define the dimensionality of the latent space
########################################################################################################################
# Establish the Framework for a LINEAR Interpolation
number_internal = int(interp_length)  # the number of interpolations that the model will find between two points
num_interp = number_internal + 2  # the number of images to be pictured
latent_matrix = []  # This will contain the latent points of the interpolation
for column in range(latent_dimensionality):
    new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
    latent_matrix.append(new_column)
latent_matrix = np.array(latent_matrix).T  # Transposes the matrix so that each row can be easily indexed
########################################################################################################################
# Plotting the Interpolation in 2D Using Chosen Points
if st.button("Generate Linear Interpolation"):
    # plt.figure(2)

    linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
    print(len(linear_interp_latent))

    linear_predicted_interps = []
    figure_2 = np.zeros((28, 28 * num_interp))
    for i in range(num_interp):
        generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
        figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
        linear_predicted_interps.append(generated_image[:, :, -1])

    # plt.figure_2(figsize=(15, 15))
    # plt.imshow(figure, cmap='gray')
    # plt.figure(2)
    # st.pyplot(figure_2)
    st.image(figure_2)
########################################################################################################################
# Provide User Options
st.header("Option 2: Perform a Mesh Interpolation")
st.write("The four corners of this mesh are defined using the shapes in both Option 1 and Option 2")
# Select Shapes
shape_3 = st.selectbox("Shape 3", shape_options)
shape_4 = st.selectbox("Shape 4", shape_options)

# Select Density
density_3 = st.selectbox("Density 3:", density_options, index=len(density_options)-1)
density_4 = st.selectbox("Density 4:", density_options, index=len(density_options)-1)

# Select Thickness
thickness_3 = st.selectbox("Thickness 3", thickness_options)
thickness_4 = st.selectbox("Thickness 4", thickness_options)

# Generate the endpoints
number_3 = generate_unit_cell(shape_3, density_3, thickness_3)
number_4 = generate_unit_cell(shape_4, density_4, thickness_4)

# Display the endpoints to the user
if st.button("Generate Endpoint Images for Mesh and Elasticity Tensors"):
    plt.figure(1)
    st.header("Endpoints to be generated:")
    elasticity_3 = elasticity(number_3)
    elasticity_4 = elasticity(number_4)
    display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2")
    display_arrays(elasticity_3, elasticity_4, "Elasticity Tensor of Shape 3", "Elasticity Tensor of Shape 4")
    plt.subplot(2, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1)
    plt.subplot(2, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1)
    plt.subplot(2, 2, 3), plt.imshow(number_3, cmap='gray', vmin=0, vmax=1)
    plt.subplot(2, 2, 4), plt.imshow(number_4, cmap='gray', vmin=0, vmax=1)
    plt.figure(1)
    st.pyplot(plt.figure(1))
########################################################################################################################
# Encode the Desired Endpoints
# resize the array to match the prediction size requirement
number_3_expand = np.expand_dims(np.expand_dims(number_3, axis=2), axis=0)
number_4_expand = np.expand_dims(np.expand_dims(number_4, axis=2), axis=0)

# Determine the latent point that will represent our desired number
latent_point_3 = encoder_model_boxes.predict(number_3_expand)[0]
latent_point_4 = encoder_model_boxes.predict(number_4_expand)[0]

latent_dimensionality = len(latent_point_1)  # define the dimensionality of the latent space
########################################################################################################################
# Plot a Mesh Gridded Interpolation
if st.button("Generate Mesh Interpolation"):
    latent_matrix_2 = []  # This will contain the latent points of the interpolation
    for column in range(latent_dimensionality):
        new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
        latent_matrix_2.append(new_column)
    latent_matrix_2 = np.array(latent_matrix_2).T  # Transposes the matrix so that each row can be easily indexed

    mesh = []  # This will create a mesh by interpolating between the two interpolations
    for column in range(num_interp):
        row = np.linspace(latent_matrix[column], latent_matrix_2[column], num_interp)
        mesh.append(row)

    mesh = np.transpose(mesh, axes=(1, 0, 2))  # Transpose the array so it matches the original interpolation
    generator_model = decoder_model_boxes

    figure_3 = np.zeros((28 * num_interp, 28 * num_interp))

    mesh_predicted_interps = []
    for i in range(num_interp):
        for j in range(num_interp):
            generated_image = generator_model.predict(np.array([mesh[i][j]]))[0]
            figure_3[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1]
            mesh_predicted_interps.append(generated_image[:, :, -1])

    st.image(figure_3)