File size: 7,825 Bytes
2200060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# For neural networks
import keras
# For train-test splits
import sklearn.model_selection
# For random calculations
import numpy
# For help with saving and opening things
import os

# Disable eager execution because its bad
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

# Start a session for checking calculations and stuff
import tensorflow as tf
sess = tf.compat.v1.Session()

from keras import backend as K
K.set_session(sess)


# Do you want it loud? 
VERBOSE = 1

# This function loads a fuckton of data
def load_data():
    # Open all the files we downloaded at the beginning and take out hte good bits
    curves = numpy.load('/content/data_curves.npz')['curves']
    geometry = numpy.load('/content/data_geometry.npz')['geometry']
    constants = numpy.load('/content/constants.npz')
    S = constants['S']
    N = constants['N']
    D = constants['D']
    F = constants['F']
    G = constants['G']

    # Some of the good bits need additional processining
    new_curves = numpy.zeros((S*N, D * F))
    for i, curveset in enumerate(curves):
        new_curves[i, :] = curveset.T.flatten() / 1000000

    new_geometry = numpy.zeros((S*N, G * G * G))
    for i, geometryset in enumerate(geometry):
        new_geometry[i, :] = geometryset.T.flatten()

    # Return good bits to user
    return curves, geometry, S, N, D, F, G, new_curves, new_geometry
    
import gradio
import pandas

class Network(object):

  def __init__(self, structure, weights):
      # Instantiate variables
      self.curves = 0
      self.new_curves = 0
      self.geometry = 0
      self.new_geometry = 0
      self.S = 0
      self.N = 0
      self.D = 0
      self.F = 0
      self.G = 0

      # Load network
      with open(structure, 'r') as file:
          self.network = keras.models.model_from_json(file.read())
          self.network.load_weights(weights)

      # Load data
      self._load_data()

  def _load_data(self):
      self.curves, self.geometry, self.S, self.N, self.D, self.F, self.G, self.new_curves, self.new_geometry = load_data()

  def analysis(self, idx=None):
      print(idx)

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      # Get the input
      data_input = self.new_geometry[idx:(idx+1), :]
      other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')

      # Get the outputs
      predicted_output = self.network.predict(data_input)
      true_output = self.new_curves[idx].reshape((3, self.F))
      predicted_output = predicted_output.reshape((3, self.F))

      f = numpy.linspace(0.05, 2.0, 64)
      fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
      df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
      df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})

      # return idx, other_data_input, true_output, predicted_output
      return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1)

  def synthesis(self, idx=None):
      print(idx)

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      # Get the input
      data_input = self.new_curves[idx:(idx+1), :]
      other_data_input = data_input.reshape((3, self.F))

      # Get the outputs
      predicted_output = self.network.predict(data_input)
      true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
      predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return predicted_output, true_output

  def get_geometry(self, idx=None):

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      idx = int(idx)

      # Get the input
      data_input = self.new_geometry[idx:(idx+1), :]
      other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return other_data_input


  def get_performance(self, idx=None):

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      idx = int(idx)

      # Get the input
      data_input = self.new_curves[idx:(idx+1), :]
      other_data_input = data_input.reshape((3, self.F))

      f = numpy.linspace(0.05, 2.0, 64)
      fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
      df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
      table = pandas.concat([fd, df_pred], axis=1)

      # return idx, other_data_input, true_output, predicted_output
      return table

def simple_analysis(index):
    net = Network("/content/16forward_structure.json", "/content/16forward_weights.h5")
    return net.analysis(index)
    
def simple_synthesis(index):
    net = Network("/content/16inverse_structure.json", "/content/16inverse_weights.h5")
    pred, true = net.synthesis(index)
    return plotly_fig(pred), plotly_fig(true)
    
import plotly.graph_objects as go
import numpy as np

def performance(index):
    net = Network("/content/16forward_structure.json", "/content/16forward_weights.h5")
    return net.get_performance(index)

def geometry(index):
    net = Network("/content/16forward_structure.json", "/content/16forward_weights.h5")
    values = net.get_geometry(index)
    return plotly_fig(values)


def plotly_fig(values):
    X, Y, Z = np.mgrid[0:1:32j, 0:1:32j, 0:1:32j]
    fig = go.Figure(data=go.Volume(
        x=X.flatten(),
        y=Y.flatten(),
        z=Z.flatten(),
        value=values.flatten(),
        isomin=-0.1,
        isomax=0.8,
        opacity=0.1, # needs to be small to see through all surfaces
        surface_count=21, # needs to be a large number for good volume rendering
        ))
    return fig 
    
with gradio.Blocks() as analysis_demo:
    with gradio.Row():
        with gradio.Column():
            num = gradio.Number(42, label="data index")
            btn1 = gradio.Button("Select")    
        with gradio.Column():
            geo = gradio.Plot(label="Geometry")

    with gradio.Row():
        btn2 = gradio.Button("Estimate Spectrum")

    with gradio.Row():
      with gradio.Column():
          pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")

      with gradio.Column():
          true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True")

    btn1.click(fn=geometry, inputs=[num], outputs=[geo])
    btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true])
    
with gradio.Blocks() as synthesis_demo:
    with gradio.Row():
        with gradio.Column():
            num = gradio.Number(42, label="data index")
            btn1 = gradio.Button("Select")    
        with gradio.Column():
            perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")

    with gradio.Row():
        btn2 = gradio.Button("Synthesize Geometry")

    with gradio.Row():
      with gradio.Column():
          pred = gradio.Plot(label="Predicted")

      with gradio.Column():
          true = gradio.Plot(label="True")

    btn1.click(fn=performance, inputs=[num], outputs=[perf])
    btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true])
    
all_synthesis_demos = gradio.TabbedInterface([synthesis_demo], ["Random Spectrum from Data"])

all_analysis_demos = gradio.TabbedInterface([analysis_demo], ["Random Geometry from Data"])

demo = gradio.TabbedInterface([all_analysis_demos, all_synthesis_demos], ["Analysis", "Synthesis"])
demo.launch()