File size: 11,157 Bytes
2200060 3591396 2200060 ca1362c 2200060 ca1362c 2200060 eafa610 ca1362c eafa610 be8288e 2200060 3a063df adfcce3 98e78c1 025f222 2200060 98e78c1 3a063df 98e78c1 3a063df 98e78c1 7759c3d 6911ba8 7759c3d 98e78c1 3a063df 98e78c1 3a063df 98e78c1 2200060 eafa610 aae44c3 eafa610 06be991 eafa610 ef755bb 524fed7 ef755bb 545950a ef755bb aae44c3 ef755bb aae44c3 ef755bb d5975ed a91a03c b9ce21a d5975ed 3459d68 a91a03c d5975ed 524fed7 2200060 eafa610 2200060 d5975ed f5dff1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# For neural networks
import keras
# For train-test splits
import sklearn.model_selection
# For random calculations
import numpy
# For help with saving and opening things
import os
# Disable eager execution because its bad
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Start a session for checking calculations and stuff
import tensorflow as tf
sess = tf.compat.v1.Session()
from keras import backend as K
K.set_session(sess)
# Do you want it loud?
VERBOSE = 1
# This function loads a fuckton of data
def load_data():
# Open all the files we downloaded at the beginning and take out hte good bits
curves = numpy.load('data_curves.npz')['curves']
geometry = numpy.load('data_geometry.npz')['geometry']
constants = numpy.load('constants.npz')
S = constants['S']
N = constants['N']
D = constants['D']
F = constants['F']
G = constants['G']
# Some of the good bits need additional processining
new_curves = numpy.zeros((S*N, D * F))
for i, curveset in enumerate(curves):
new_curves[i, :] = curveset.T.flatten() / 1000000
new_geometry = numpy.zeros((S*N, G * G * G))
for i, geometryset in enumerate(geometry):
new_geometry[i, :] = geometryset.T.flatten()
# Return good bits to user
return curves, geometry, S, N, D, F, G, new_curves, new_geometry
import gradio
import pandas
class Network(object):
def __init__(self, structure, weights):
# Instantiate variables
self.curves = 0
self.new_curves = 0
self.geometry = 0
self.new_geometry = 0
self.S = 0
self.N = 0
self.D = 0
self.F = 0
self.G = 0
# Load network
with open(structure, 'r') as file:
self.network = keras.models.model_from_json(file.read())
self.network.load_weights(weights)
# Load data
self._load_data()
def _load_data(self):
self.curves, self.geometry, self.S, self.N, self.D, self.F, self.G, self.new_curves, self.new_geometry = load_data()
def analysis(self, idx=None):
print(idx)
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
# Get the input
data_input = self.new_geometry[idx:(idx+1), :]
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
# Get the outputs
predicted_output = self.network.predict(data_input)
true_output = self.new_curves[idx].reshape((3, self.F))
predicted_output = predicted_output.reshape((3, self.F))
f = numpy.linspace(0.05, 2.0, 64)
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
# return idx, other_data_input, true_output, predicted_output
return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1)
def synthesis(self, idx=None):
print(idx)
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
# Get the input
data_input = self.new_curves[idx:(idx+1), :]
other_data_input = data_input.reshape((3, self.F))
# Get the outputs
predicted_output = self.network.predict(data_input)
true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return predicted_output, true_output
def synthesis_from_spectrum(self, other_data_input):
# Get the input
data_input = other_data_input.reshape((1, 3*self.F))
# Get the outputs
predicted_output = self.network.predict(data_input)
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return predicted_output
def get_geometry(self, idx=None):
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
idx = int(idx)
# Get the input
data_input = self.new_geometry[idx:(idx+1), :]
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return other_data_input
def get_performance(self, idx=None):
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
idx = int(idx)
# Get the input
data_input = self.new_curves[idx:(idx+1), :]
other_data_input = data_input.reshape((3, self.F))
f = numpy.linspace(0.05, 2.0, 64)
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
table = pandas.concat([fd, df_pred], axis=1)
# return idx, other_data_input, true_output, predicted_output
return table
# forward_net = Network("16forward_structure.json", "16forward_weights.h5")
# inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
import plotly.graph_objects as go
import numpy as np
def plotly_fig(values):
X, Y, Z = np.mgrid[0:1:32j, 0:1:32j, 0:1:32j]
fig = go.Figure(data=go.Volume(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=-0.1,
isomax=0.8,
opacity=0.1, # needs to be small to see through all surfaces
surface_count=21, # needs to be a large number for good volume rendering
))
return fig
def performance(index):
forward_net = Network("16forward_structure.json", "16forward_weights.h5")
return forward_net.get_performance(index)
def geometry(index):
forward_net = Network("16forward_structure.json", "16forward_weights.h5")
values = forward_net.get_geometry(index)
return plotly_fig(values)
global forward_net
forward_net = Network("16forward_structure.json", "16forward_weights.h5")
def simple_analysis(index):
global forward_net
return forward_net.analysis(index)
def simple_synthesis(index):
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
pred, true = inverse_net.synthesis(index)
return plotly_fig(pred), plotly_fig(true)
def synthesis_from_spectrum(df):
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
pred = inverse_net.synthesis_from_spectrum(df.to_numpy())
return plotly_fig(pred)
with gradio.Blocks() as analysis_demo:
with gradio.Row():
with gradio.Column():
num = gradio.Number(42, label="data index")
btn1 = gradio.Button("Select")
with gradio.Column():
geo = gradio.Plot(label="Geometry")
with gradio.Row():
btn2 = gradio.Button("Estimate Spectrum")
with gradio.Row():
with gradio.Column():
pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")
with gradio.Column():
true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True")
btn1.click(fn=geometry, inputs=[num], outputs=[geo])
btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true])
with gradio.Blocks() as synthesis_demo:
with gradio.Row():
with gradio.Column():
num = gradio.Number(42, label="data index")
btn1 = gradio.Button("Select")
with gradio.Column():
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
with gradio.Column():
pred = gradio.Plot(label="Predicted")
with gradio.Column():
true = gradio.Plot(label="True")
btn1.click(fn=performance, inputs=[num], outputs=[perf])
btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true])
with gradio.Blocks() as synthesis_demo2:
with gradio.Row():
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
pred = gradio.Plot(label="Predicted")
btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred])
with gradio.Blocks() as synthesis_demo3:
with gradio.Row():
perf = gradio.DataFrame(headers=['Surge', 'Heave', 'Pitch'], value=numpy.zeros((64, 3)).tolist())
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
pred = gradio.Plot(label="Predicted")
btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred])
with gradio.Blocks() as intro:
with gradio.Row():
with gradio.Column():
title = gradio.Markdown("# Toward the Rapid Design of Engineered Systems Through Deep Neural Networks")
with gradio.Column():
title = gradio.Markdown("Christopher McComb\n[Design Research Collective](https://cmudrc.github.io/)\nCarnegie Mellon University")
with gradio.Column():
download = gradio.File(value="McComb2019_Chapter_TowardTheRapidDesignOfEngineer.pdf")
with gradio.Row():
gradio.Markdown("The design of a system commits a significant portion of the final cost of that system. Many computational approaches have been developed to assist designers in the analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimization) of engineered systems. However, many of these approaches are computationally intensive, taking significant time to complete an analysis and even longer to iteratively synthesize a solution. The current work proposes a methodology for rapidly evaluating and synthesizing engineered systems through the use of deep neural networks. The proposed methodology is applied to the analysis and synthesis of offshore structures such as oil platforms. These structures are constructed in a marine environment and are typically designed to achieve specific dynamics in response to a known spectrum of ocean waves. Results show that deep learning can be used to accurately and rapidly synthesize and analyze offshore structures.\n\nThe paper linked to the left provides details about the implementation. This site contains demos of the trained networks.")
all_synthesis_demos = gradio.TabbedInterface([synthesis_demo, synthesis_demo2, synthesis_demo3], ["Spectrum from Dataset", "Spectrum from File", "Spectrum from DataFrame"])
all_analysis_demos = gradio.TabbedInterface([analysis_demo], ["Geometry from Data"])
demo = gradio.TabbedInterface([intro, all_analysis_demos, all_synthesis_demos], ["About", "Analysis", "Synthesis"])
demo.launch(debug=True) |