File size: 11,157 Bytes
2200060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3591396
 
 
2200060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1362c
2200060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1362c
2200060
 
 
 
 
eafa610
 
 
 
 
 
 
ca1362c
eafa610
 
 
be8288e
2200060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a063df
 
adfcce3
98e78c1
025f222
2200060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e78c1
 
 
3a063df
98e78c1
 
 
3a063df
98e78c1
 
 
7759c3d
6911ba8
 
7759c3d
 
98e78c1
 
 
3a063df
98e78c1
 
 
 
3a063df
98e78c1
 
 
2200060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eafa610
 
 
 
 
 
 
 
 
aae44c3
eafa610
06be991
eafa610
ef755bb
524fed7
ef755bb
545950a
ef755bb
 
 
 
 
aae44c3
ef755bb
aae44c3
ef755bb
 
d5975ed
 
 
a91a03c
b9ce21a
 
d5975ed
3459d68
a91a03c
 
d5975ed
524fed7
2200060
eafa610
2200060
d5975ed
f5dff1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# For neural networks
import keras
# For train-test splits
import sklearn.model_selection
# For random calculations
import numpy
# For help with saving and opening things
import os

# Disable eager execution because its bad
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

# Start a session for checking calculations and stuff
import tensorflow as tf
sess = tf.compat.v1.Session()

from keras import backend as K
K.set_session(sess)

# Do you want it loud? 
VERBOSE = 1

# This function loads a fuckton of data
def load_data():
    # Open all the files we downloaded at the beginning and take out hte good bits
    curves = numpy.load('data_curves.npz')['curves']
    geometry = numpy.load('data_geometry.npz')['geometry']
    constants = numpy.load('constants.npz')
    S = constants['S']
    N = constants['N']
    D = constants['D']
    F = constants['F']
    G = constants['G']

    # Some of the good bits need additional processining
    new_curves = numpy.zeros((S*N, D * F))
    for i, curveset in enumerate(curves):
        new_curves[i, :] = curveset.T.flatten() / 1000000

    new_geometry = numpy.zeros((S*N, G * G * G))
    for i, geometryset in enumerate(geometry):
        new_geometry[i, :] = geometryset.T.flatten()

    # Return good bits to user
    return curves, geometry, S, N, D, F, G, new_curves, new_geometry
    
import gradio
import pandas

class Network(object):

  def __init__(self, structure, weights):
      # Instantiate variables
      self.curves = 0
      self.new_curves = 0
      self.geometry = 0
      self.new_geometry = 0
      self.S = 0
      self.N = 0
      self.D = 0
      self.F = 0
      self.G = 0

      # Load network
      with open(structure, 'r') as file:
          self.network = keras.models.model_from_json(file.read())
          self.network.load_weights(weights)

      # Load data
      self._load_data()

  def _load_data(self):
      self.curves, self.geometry, self.S, self.N, self.D, self.F, self.G, self.new_curves, self.new_geometry = load_data()

  def analysis(self, idx=None):
      print(idx)

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      # Get the input
      data_input = self.new_geometry[idx:(idx+1), :]
      other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')

      # Get the outputs
      predicted_output = self.network.predict(data_input)
      true_output = self.new_curves[idx].reshape((3, self.F))
      predicted_output = predicted_output.reshape((3, self.F))

      f = numpy.linspace(0.05, 2.0, 64)
      fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
      df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
      df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})

      # return idx, other_data_input, true_output, predicted_output
      return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1)

  def synthesis(self, idx=None):
      print(idx)

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      # Get the input
      data_input = self.new_curves[idx:(idx+1), :]
      other_data_input = data_input.reshape((3, self.F))

      # Get the outputs
      predicted_output = self.network.predict(data_input)
      true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
      predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return predicted_output, true_output
      
  
  def synthesis_from_spectrum(self, other_data_input):
      # Get the input
      data_input = other_data_input.reshape((1, 3*self.F))
 
      # Get the outputs
      predicted_output = self.network.predict(data_input)
      predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return predicted_output

  def get_geometry(self, idx=None):

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      idx = int(idx)

      # Get the input
      data_input = self.new_geometry[idx:(idx+1), :]
      other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return other_data_input


  def get_performance(self, idx=None):

      if idx is None:
          idx = numpy.random.randint(1, self.S * self.N)
      else:
        idx = int(idx)

      idx = int(idx)

      # Get the input
      data_input = self.new_curves[idx:(idx+1), :]
      other_data_input = data_input.reshape((3, self.F))

      f = numpy.linspace(0.05, 2.0, 64)
      fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
      df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
      table = pandas.concat([fd, df_pred], axis=1)

      # return idx, other_data_input, true_output, predicted_output
      return table

# forward_net = Network("16forward_structure.json", "16forward_weights.h5")
# inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")



import plotly.graph_objects as go
import numpy as np


def plotly_fig(values):
    X, Y, Z = np.mgrid[0:1:32j, 0:1:32j, 0:1:32j]
    fig = go.Figure(data=go.Volume(
        x=X.flatten(),
        y=Y.flatten(),
        z=Z.flatten(),
        value=values.flatten(),
        isomin=-0.1,
        isomax=0.8,
        opacity=0.1, # needs to be small to see through all surfaces
        surface_count=21, # needs to be a large number for good volume rendering
        ))
    return fig 


def performance(index):
    forward_net = Network("16forward_structure.json", "16forward_weights.h5")
    return forward_net.get_performance(index)

def geometry(index):
    forward_net = Network("16forward_structure.json", "16forward_weights.h5")
    values = forward_net.get_geometry(index)
    return plotly_fig(values)

global forward_net
forward_net = Network("16forward_structure.json", "16forward_weights.h5")  

def simple_analysis(index): 
    global forward_net 
    return forward_net.analysis(index)

def simple_synthesis(index):
    inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
    pred, true = inverse_net.synthesis(index)
    return plotly_fig(pred), plotly_fig(true)
    
def synthesis_from_spectrum(df):
    inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
    pred = inverse_net.synthesis_from_spectrum(df.to_numpy())
    return plotly_fig(pred)
   
    
with gradio.Blocks() as analysis_demo:
    with gradio.Row():
        with gradio.Column():
            num = gradio.Number(42, label="data index")
            btn1 = gradio.Button("Select")    
        with gradio.Column():
            geo = gradio.Plot(label="Geometry")

    with gradio.Row():
        btn2 = gradio.Button("Estimate Spectrum")

    with gradio.Row():
      with gradio.Column():
          pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")

      with gradio.Column():
          true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True")

    btn1.click(fn=geometry, inputs=[num], outputs=[geo])
    btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true])
    
with gradio.Blocks() as synthesis_demo:
    with gradio.Row():
        with gradio.Column():
            num = gradio.Number(42, label="data index")
            btn1 = gradio.Button("Select")    
        with gradio.Column():
            perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")

    with gradio.Row():
        btn2 = gradio.Button("Synthesize Geometry")

    with gradio.Row():
      with gradio.Column():
          pred = gradio.Plot(label="Predicted")

      with gradio.Column():
          true = gradio.Plot(label="True")

    btn1.click(fn=performance, inputs=[num], outputs=[perf])
    btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true])
    
    
with gradio.Blocks() as synthesis_demo2:
    with gradio.Row():
        perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")

    with gradio.Row():
        btn2 = gradio.Button("Synthesize Geometry")

    with gradio.Row():
        pred = gradio.Plot(label="Predicted")

    btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred])
    
    
with gradio.Blocks() as synthesis_demo3:
    with gradio.Row():
        perf = gradio.DataFrame(headers=['Surge', 'Heave', 'Pitch'], value=numpy.zeros((64, 3)).tolist())

    with gradio.Row():
        btn2 = gradio.Button("Synthesize Geometry")

    with gradio.Row():
        pred = gradio.Plot(label="Predicted")

    btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred])
    
    
with gradio.Blocks() as intro:
    with gradio.Row():
        with gradio.Column():
            title = gradio.Markdown("# Toward the Rapid Design of Engineered Systems Through Deep Neural Networks")
        with gradio.Column():
            title = gradio.Markdown("Christopher McComb\n[Design Research Collective](https://cmudrc.github.io/)\nCarnegie Mellon University")
        with gradio.Column():
            download = gradio.File(value="McComb2019_Chapter_TowardTheRapidDesignOfEngineer.pdf")
    with gradio.Row():
        gradio.Markdown("The design of a system commits a significant portion of the final cost of that system. Many computational approaches have been developed to assist designers in the analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimization) of engineered systems. However, many of these approaches are computationally intensive, taking significant time to complete an analysis and even longer to iteratively synthesize a solution. The current work proposes a methodology for rapidly evaluating and synthesizing engineered systems through the use of deep neural networks. The proposed methodology is applied to the analysis and synthesis of offshore structures such as oil platforms. These structures are constructed in a marine environment and are typically designed to achieve specific dynamics in response to a known spectrum of ocean waves. Results show that deep learning can be used to accurately and rapidly synthesize and analyze offshore structures.\n\nThe paper linked to the left provides details about the implementation. This site contains demos of the trained networks.")
    
all_synthesis_demos = gradio.TabbedInterface([synthesis_demo, synthesis_demo2, synthesis_demo3], ["Spectrum from Dataset", "Spectrum from File", "Spectrum from DataFrame"])

all_analysis_demos = gradio.TabbedInterface([analysis_demo], ["Geometry from Data"])

demo = gradio.TabbedInterface([intro, all_analysis_demos, all_synthesis_demos], ["About", "Analysis", "Synthesis"])
demo.launch(debug=True)