wecnet / app.py
ccm's picture
Update app.py
d00722c
raw
history blame
13.8 kB
# For neural networks
import keras
# For train-test splits
import sklearn.model_selection
# For random calculations
import numpy
# For help with saving and opening things
import os
# Disable eager execution because its bad
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
# Start a session for checking calculations and stuff
import tensorflow as tf
sess = tf.compat.v1.Session()
from keras import backend as K
K.set_session(sess)
# Do you want it loud?
VERBOSE = 1
# This function loads a fuckton of data
def load_data():
# Open all the files we downloaded at the beginning and take out hte good bits
curves = numpy.load('data_curves.npz')['curves']
geometry = numpy.load('data_geometry.npz')['geometry']
constants = numpy.load('constants.npz')
S = constants['S']
N = constants['N']
D = constants['D']
F = constants['F']
G = constants['G']
# Some of the good bits need additional processining
new_curves = numpy.zeros((S*N, D * F))
for i, curveset in enumerate(curves):
new_curves[i, :] = curveset.T.flatten() / 1000000
new_geometry = numpy.zeros((S*N, G * G * G))
for i, geometryset in enumerate(geometry):
new_geometry[i, :] = geometryset.T.flatten()
# Return good bits to user
return curves, geometry, S, N, D, F, G, new_curves, new_geometry
import gradio
import pandas
curves, geometry, S, N, D, F, G, new_curves, new_geometry = load_data()
class Network(object):
def __init__(self, structure, weights):
# Instantiate variables
self.curves = curves
self.new_curves = new_curves
self.geometry = geometry
self.new_geometry = new_geometry
self.S = S
self.N = N
self.D = D
self.F = F
self.G = G
# Load network
with open(structure, 'r') as file:
self.network = keras.models.model_from_json(file.read())
self.network.load_weights(weights)
def analysis(self, idx=None):
print(idx)
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
# Get the input
data_input = self.new_geometry[idx:(idx+1), :]
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
# Get the outputs
predicted_output = self.network.predict(data_input)
true_output = self.new_curves[idx].reshape((3, self.F))
predicted_output = predicted_output.reshape((3, self.F))
f = numpy.linspace(0.05, 2.0, 64)
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
# return idx, other_data_input, true_output, predicted_output
return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1)
def synthesis(self, idx=None):
print(idx)
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
# Get the input
data_input = self.new_curves[idx:(idx+1), :]
other_data_input = data_input.reshape((3, self.F))
# Get the outputs
predicted_output = self.network.predict(data_input)
true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return predicted_output, true_output
def synthesis_from_spectrum(self, other_data_input):
# Get the input
data_input = other_data_input.reshape((1, 3*self.F))
# Get the outputs
predicted_output = self.network.predict(data_input)
predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return predicted_output
def get_geometry(self, idx=None):
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
idx = int(idx)
# Get the input
data_input = self.new_geometry[idx:(idx+1), :]
other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
# return idx, other_data_input, true_output, predicted_output
return other_data_input
def get_performance(self, idx=None):
if idx is None:
idx = numpy.random.randint(1, self.S * self.N)
else:
idx = int(idx)
idx = int(idx)
# Get the input
data_input = self.new_curves[idx:(idx+1), :]
other_data_input = data_input.reshape((3, self.F))
f = numpy.linspace(0.05, 2.0, 64)
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
table = pandas.concat([fd, df_pred], axis=1)
# return idx, other_data_input, true_output, predicted_output
return table
# forward_net = Network("16forward_structure.json", "16forward_weights.h5")
# inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
import plotly.graph_objects as go
import numpy as np
def plotly_fig(values):
X, Y, Z = np.mgrid[0:1:32j, 0:1:32j, 0:1:32j]
fig = go.Figure(data=go.Volume(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=-0.1,
isomax=0.8,
opacity=0.1, # needs to be small to see through all surfaces
surface_count=21, # needs to be a large number for good volume rendering
))
return fig
value_net = Network("16forward_structure.json", "16forward_weights.h5")
def performance(index):
return value_net.get_performance(index)
def geometry(index):
values = value_net.get_geometry(index)
return plotly_fig(values)
def simple_analysis(index):
forward_net = Network("16forward_structure.json", "16forward_weights.h5")
return forward_net.analysis(index)
def simple_synthesis(index):
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
pred, true = inverse_net.synthesis(index)
return plotly_fig(pred), plotly_fig(true)
def synthesis_from_spectrum(df):
inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
pred = inverse_net.synthesis_from_spectrum(df.to_numpy()[:, 1:])
return plotly_fig(pred)
with gradio.Blocks() as analysis_demo:
with gradio.Row():
with gradio.Column():
num = gradio.Number(42, label="data index")
btn1 = gradio.Button("Select")
with gradio.Column():
geo = gradio.Plot(label="Geometry")
with gradio.Row():
btn2 = gradio.Button("Estimate Spectrum")
with gradio.Row():
with gradio.Column():
pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")
with gradio.Column():
true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True")
btn1.click(fn=geometry, inputs=[num], outputs=[geo])
btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true])
def change_textbox(choice):
if choice == "cylinder":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False)]
elif choice == "sphere":
return [gradio.Slider.update(visible=False), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False)]
elif choice == "box":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True)]
elif choice == "wedge":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True)]
elif choice == "cone":
return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False)]
with gradio.Blocks() as analysis_demo_from_params:
with gradio.Row():
with gradio.Column():
radio = gradio.Radio(
["box", "cone", "cylinder", "sphere", "wedge"], label="What kind of shape would you like to generate?", value="box"
)
height = gradio.Slider(label="Height", interactive=True, minimum=3.0, maximum=10.0, value=6.5)
width = gradio.Slider(label="Width", interactive=True, minimum=3.0, maximum=10.0, value=6.5)
diameter = gradio.Slider(label="Diameter", interactive=True, minimum=3.0, maximum=10.0, value=6.5, visible=False)
length = gradio.Slider(label="Length", interactive=True, minimum=3.0, maximum=10.0, value=6.5)
radio.change(fn=change_textbox, inputs=radio, outputs=[height, width, diameter, length])
with gradio.Column():
geo = gradio.Plot(label="Geometry")
with gradio.Row():
btn2 = gradio.Button("Estimate Spectrum")
with gradio.Row():
with gradio.Column():
pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")
with gradio.Column():
true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True")
btn1.click(fn=geometry, inputs=[num], outputs=[geo])
btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true])
with gradio.Blocks() as synthesis_demo:
with gradio.Row():
with gradio.Column():
num = gradio.Number(42, label="data index")
btn1 = gradio.Button("Select")
with gradio.Column():
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
with gradio.Column():
pred = gradio.Plot(label="Predicted")
with gradio.Column():
true = gradio.Plot(label="True")
btn1.click(fn=performance, inputs=[num], outputs=[perf])
btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true])
with gradio.Blocks() as synthesis_demo2:
with gradio.Row():
perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
pred = gradio.Plot(label="Predicted")
btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred])
with gradio.Blocks() as synthesis_demo3:
with gradio.Row():
perf = gradio.DataFrame(headers=['Frequency', 'Surge', 'Heave', 'Pitch'], value=value_net.get_performance().to_numpy().tolist(), overflow_row_behaviour="paginate", max_rows=16, row_counts=(64, "fixed"), col_counts=(3, "fixed"))
with gradio.Row():
btn2 = gradio.Button("Synthesize Geometry")
with gradio.Row():
pred = gradio.Plot(label="Predicted")
btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred])
with gradio.Blocks() as intro:
with gradio.Row():
with gradio.Column():
title = gradio.Markdown("# Toward the Rapid Design of Engineered Systems Through Deep Neural Networks")
gradio.HTML("Christopher McComb<br/>Department of Mechanical Engineering<br/>Carnegie Mellon University")
gradio.Markdown("The design of a system commits a significant portion of the final cost of that system. Many computational approaches have been developed to assist designers in the analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimization) of engineered systems. However, many of these approaches are computationally intensive, taking significant time to complete an analysis and even longer to iteratively synthesize a solution. The current work proposes a methodology for rapidly evaluating and synthesizing engineered systems through the use of deep neural networks. The proposed methodology is applied to the analysis and synthesis of offshore structures such as oil platforms. These structures are constructed in a marine environment and are typically designed to achieve specific dynamics in response to a known spectrum of ocean waves. Results show that deep learning can be used to accurately and rapidly synthesize and analyze offshore structures.\n\nThis site contains demos of the models from the paper. Please go to the `Analysis` tab to assess the forces applied to an offshore structure, and go to the `Synthesis` tab to synthesize a structure based on desired forces. ")
with gradio.Column():
download = gradio.HTML("<a href=\"https://huggingface.co/spaces/cmudrc/wecnet/resolve/main/McComb2019_Chapter_TowardTheRapidDesignOfEngineer.pdf\" style=\"width: 60%; display: block; margin: auto;\"><img src=\"https://huggingface.co/spaces/cmudrc/wecnet/resolve/main/coverpage.png\"></a>")
all_synthesis_demos = gradio.TabbedInterface([synthesis_demo, synthesis_demo2, synthesis_demo3], ["Spectrum from Dataset", "Spectrum from File", "Spectrum from DataFrame"])
all_analysis_demos = gradio.TabbedInterface([analysis_demo, analysis_demo_from_params], ["Geometry from Data", "Geometry from Parameters"])
demo = gradio.TabbedInterface([intro, all_analysis_demos, all_synthesis_demos], ["About", "Analysis", "Synthesis"])
demo.launch(debug=True)