ccm commited on
Commit
4bfdcd7
1 Parent(s): ae208df

Remove self references to general data. Maybe faster?

Browse files
Files changed (1) hide show
  1. app.py +28 -29
app.py CHANGED
@@ -1101,15 +1101,15 @@ class Network(object):
1101
 
1102
  def __init__(self, structure, weights):
1103
  # Instantiate variables
1104
- self.curves = curves
1105
- self.new_curves = new_curves
1106
- self.geometry = geometry
1107
- self.new_geometry = new_geometry
1108
- self.S = S
1109
- self.N = N
1110
- self.D = D
1111
- self.F = F
1112
- self.G = G
1113
 
1114
  # Load network
1115
  with open(structure, 'r') as file:
@@ -1120,19 +1120,19 @@ class Network(object):
1120
  print(idx)
1121
 
1122
  if idx is None:
1123
- idx = numpy.random.randint(1, self.S * self.N)
1124
  else:
1125
  idx = int(idx)
1126
 
1127
  # Get the input
1128
- data_input = self.new_geometry[idx:(idx+1), :]
1129
- other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
1130
 
1131
  # Get the outputs
1132
  print(data_input.shape)
1133
  predicted_output = self.network.predict(data_input)
1134
- true_output = self.new_curves[idx].reshape((3, self.F))
1135
- predicted_output = predicted_output.reshape((3, self.F))
1136
 
1137
  f = numpy.linspace(0.05, 2.0, 64)
1138
  fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
@@ -1145,9 +1145,8 @@ class Network(object):
1145
 
1146
  def analysis_from_geometry(self, geometry):
1147
  # Get the outputs
1148
- print(numpy.array([geometry.flatten().tolist()]).shape)
1149
  predicted_output = self.network.predict(numpy.array([geometry.flatten().tolist()]))
1150
- predicted_output = predicted_output.reshape((3, self.F))
1151
 
1152
  f = numpy.linspace(0.05, 2.0, 64)
1153
  fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
@@ -1160,18 +1159,18 @@ class Network(object):
1160
  print(idx)
1161
 
1162
  if idx is None:
1163
- idx = numpy.random.randint(1, self.S * self.N)
1164
  else:
1165
  idx = int(idx)
1166
 
1167
  # Get the input
1168
- data_input = self.new_curves[idx:(idx+1), :]
1169
- other_data_input = data_input.reshape((3, self.F))
1170
 
1171
  # Get the outputs
1172
  predicted_output = self.network.predict(data_input)
1173
- true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
1174
- predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
1175
 
1176
  # return idx, other_data_input, true_output, predicted_output
1177
  return predicted_output, true_output
@@ -1179,11 +1178,11 @@ class Network(object):
1179
 
1180
  def synthesis_from_spectrum(self, other_data_input):
1181
  # Get the input
1182
- data_input = other_data_input.reshape((1, 3*self.F))
1183
 
1184
  # Get the outputs
1185
  predicted_output = self.network.predict(data_input)
1186
- predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
1187
 
1188
  # return idx, other_data_input, true_output, predicted_output
1189
  return predicted_output
@@ -1191,15 +1190,15 @@ class Network(object):
1191
  def get_geometry(self, idx=None):
1192
 
1193
  if idx is None:
1194
- idx = numpy.random.randint(1, self.S * self.N)
1195
  else:
1196
  idx = int(idx)
1197
 
1198
  idx = int(idx)
1199
 
1200
  # Get the input
1201
- data_input = self.new_geometry[idx:(idx+1), :]
1202
- other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
1203
 
1204
  # return idx, other_data_input, true_output, predicted_output
1205
  return other_data_input
@@ -1208,15 +1207,15 @@ class Network(object):
1208
  def get_performance(self, idx=None):
1209
 
1210
  if idx is None:
1211
- idx = numpy.random.randint(1, self.S * self.N)
1212
  else:
1213
  idx = int(idx)
1214
 
1215
  idx = int(idx)
1216
 
1217
  # Get the input
1218
- data_input = self.new_curves[idx:(idx+1), :]
1219
- other_data_input = data_input.reshape((3, self.F))
1220
 
1221
  f = numpy.linspace(0.05, 2.0, 64)
1222
  fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
 
1101
 
1102
  def __init__(self, structure, weights):
1103
  # Instantiate variables
1104
+ # self.curves = curves
1105
+ # self.new_curves = new_curves
1106
+ # self.geometry = geometry
1107
+ # self.new_geometry = new_geometry
1108
+ # self.S = S
1109
+ # self.N = N
1110
+ # self.D = D
1111
+ # self.F = F
1112
+ # self.G = G
1113
 
1114
  # Load network
1115
  with open(structure, 'r') as file:
 
1120
  print(idx)
1121
 
1122
  if idx is None:
1123
+ idx = numpy.random.randint(1, S * N)
1124
  else:
1125
  idx = int(idx)
1126
 
1127
  # Get the input
1128
+ data_input = new_geometry[idx:(idx+1), :]
1129
+ other_data_input = data_input.reshape((G, G, G), order='F')
1130
 
1131
  # Get the outputs
1132
  print(data_input.shape)
1133
  predicted_output = self.network.predict(data_input)
1134
+ true_output = new_curves[idx].reshape((3, F))
1135
+ predicted_output = predicted_output.reshape((3, F))
1136
 
1137
  f = numpy.linspace(0.05, 2.0, 64)
1138
  fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
 
1145
 
1146
  def analysis_from_geometry(self, geometry):
1147
  # Get the outputs
 
1148
  predicted_output = self.network.predict(numpy.array([geometry.flatten().tolist()]))
1149
+ predicted_output = predicted_output.reshape((3, F))
1150
 
1151
  f = numpy.linspace(0.05, 2.0, 64)
1152
  fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
 
1159
  print(idx)
1160
 
1161
  if idx is None:
1162
+ idx = numpy.random.randint(1, S * N)
1163
  else:
1164
  idx = int(idx)
1165
 
1166
  # Get the input
1167
+ data_input = new_curves[idx:(idx+1), :]
1168
+ other_data_input = data_input.reshape((3, F))
1169
 
1170
  # Get the outputs
1171
  predicted_output = self.network.predict(data_input)
1172
+ true_output = new_geometry[idx].reshape((G, G, G), order='F')
1173
+ predicted_output = predicted_output.reshape((G, G, G), order='F')
1174
 
1175
  # return idx, other_data_input, true_output, predicted_output
1176
  return predicted_output, true_output
 
1178
 
1179
  def synthesis_from_spectrum(self, other_data_input):
1180
  # Get the input
1181
+ data_input = other_data_input.reshape((1, 3*F))
1182
 
1183
  # Get the outputs
1184
  predicted_output = self.network.predict(data_input)
1185
+ predicted_output = predicted_output.reshape((G, G, G), order='F')
1186
 
1187
  # return idx, other_data_input, true_output, predicted_output
1188
  return predicted_output
 
1190
  def get_geometry(self, idx=None):
1191
 
1192
  if idx is None:
1193
+ idx = numpy.random.randint(1, S * N)
1194
  else:
1195
  idx = int(idx)
1196
 
1197
  idx = int(idx)
1198
 
1199
  # Get the input
1200
+ data_input = new_geometry[idx:(idx+1), :]
1201
+ other_data_input = data_input.reshape((G, G, G), order='F')
1202
 
1203
  # return idx, other_data_input, true_output, predicted_output
1204
  return other_data_input
 
1207
  def get_performance(self, idx=None):
1208
 
1209
  if idx is None:
1210
+ idx = numpy.random.randint(1, S *N)
1211
  else:
1212
  idx = int(idx)
1213
 
1214
  idx = int(idx)
1215
 
1216
  # Get the input
1217
+ data_input = new_curves[idx:(idx+1), :]
1218
+ other_data_input = data_input.reshape((3, F))
1219
 
1220
  f = numpy.linspace(0.05, 2.0, 64)
1221
  fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})