Update app.py
Browse files
app.py
CHANGED
@@ -1166,9 +1166,9 @@ class Network(object):
|
|
1166 |
f = numpy.linspace(0.05, 2.0, 64)
|
1167 |
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
|
1168 |
df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
|
|
|
1169 |
|
1170 |
-
return
|
1171 |
-
|
1172 |
|
1173 |
def synthesis(self, idx=None):
|
1174 |
print(idx)
|
@@ -1366,7 +1366,7 @@ with gradio.Blocks() as demo:
|
|
1366 |
pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")
|
1367 |
|
1368 |
with gradio.Column():
|
1369 |
-
true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True")
|
1370 |
|
1371 |
radio.change(fn=change_textbox, inputs=[radio, length, height, width, diameter], outputs=[height, width, diameter, length, geo])
|
1372 |
height.change(fn=make_voxels, inputs = [radio, length, height, width, diameter], outputs=[geo])
|
|
|
1166 |
f = numpy.linspace(0.05, 2.0, 64)
|
1167 |
fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
|
1168 |
df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
|
1169 |
+
good_frame = pandas.concat([fd, df_pred], axis=1)
|
1170 |
|
1171 |
+
return good_frame, good_frame
|
|
|
1172 |
|
1173 |
def synthesis(self, idx=None):
|
1174 |
print(idx)
|
|
|
1366 |
pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")
|
1367 |
|
1368 |
with gradio.Column():
|
1369 |
+
true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True", visible=False)
|
1370 |
|
1371 |
radio.change(fn=change_textbox, inputs=[radio, length, height, width, diameter], outputs=[height, width, diameter, length, geo])
|
1372 |
height.change(fn=make_voxels, inputs = [radio, length, height, width, diameter], outputs=[geo])
|