# For neural networks import keras # For train-test splits import sklearn.model_selection # For random calculations import numpy # For help with saving and opening things import os # Disable eager execution because its bad from tensorflow.python.framework.ops import disable_eager_execution disable_eager_execution() # Start a session for checking calculations and stuff import tensorflow as tf sess = tf.compat.v1.Session() from keras import backend as K K.set_session(sess) # Do you want it loud? VERBOSE = 1 # This function loads a fuckton of data def load_data(): # Open all the files we downloaded at the beginning and take out hte good bits curves = numpy.load('data_curves.npz')['curves'] geometry = numpy.load('data_geometry.npz')['geometry'] constants = numpy.load('constants.npz') S = constants['S'] N = constants['N'] D = constants['D'] F = constants['F'] G = constants['G'] # Some of the good bits need additional processining new_curves = numpy.zeros((S*N, D * F)) for i, curveset in enumerate(curves): new_curves[i, :] = curveset.T.flatten() / 1000000 new_geometry = numpy.zeros((S*N, G * G * G)) for i, geometryset in enumerate(geometry): new_geometry[i, :] = geometryset.T.flatten() # Return good bits to user return curves, geometry, S, N, D, F, G, new_curves, new_geometry import gradio import pandas class Network(object): def __init__(self, structure, weights): # Instantiate variables self.curves = 0 self.new_curves = 0 self.geometry = 0 self.new_geometry = 0 self.S = 0 self.N = 0 self.D = 0 self.F = 0 self.G = 0 # Load network with open(structure, 'r') as file: self.network = keras.models.model_from_json(file.read()) self.network.load_weights(weights) # Load data self._load_data() def _load_data(self): self.curves, self.geometry, self.S, self.N, self.D, self.F, self.G, self.new_curves, self.new_geometry = load_data() def analysis(self, idx=None): print(idx) if idx is None: idx = numpy.random.randint(1, self.S * self.N) else: idx = int(idx) # Get the input data_input = self.new_geometry[idx:(idx+1), :] other_data_input = data_input.reshape((self.G, self.G, self.G), order='F') # Get the outputs predicted_output = self.network.predict(data_input) true_output = self.new_curves[idx].reshape((3, self.F)) predicted_output = predicted_output.reshape((3, self.F)) f = numpy.linspace(0.05, 2.0, 64) fd = pandas.DataFrame(f).rename(columns={0: "Frequency"}) df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"}) df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"}) # return idx, other_data_input, true_output, predicted_output return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1) def synthesis(self, idx=None): print(idx) if idx is None: idx = numpy.random.randint(1, self.S * self.N) else: idx = int(idx) # Get the input data_input = self.new_curves[idx:(idx+1), :] other_data_input = data_input.reshape((3, self.F)) # Get the outputs predicted_output = self.network.predict(data_input) true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F') predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F') # return idx, other_data_input, true_output, predicted_output return predicted_output, true_output def synthesis_from_spectrum(self, other_data_input): # Get the input data_input = other_data_input.reshape((1, 3*self.F)) # Get the outputs predicted_output = self.network.predict(data_input) predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F') # return idx, other_data_input, true_output, predicted_output return predicted_output def get_geometry(self, idx=None): if idx is None: idx = numpy.random.randint(1, self.S * self.N) else: idx = int(idx) idx = int(idx) # Get the input data_input = self.new_geometry[idx:(idx+1), :] other_data_input = data_input.reshape((self.G, self.G, self.G), order='F') # return idx, other_data_input, true_output, predicted_output return other_data_input def get_performance(self, idx=None): if idx is None: idx = numpy.random.randint(1, self.S * self.N) else: idx = int(idx) idx = int(idx) # Get the input data_input = self.new_curves[idx:(idx+1), :] other_data_input = data_input.reshape((3, self.F)) f = numpy.linspace(0.05, 2.0, 64) fd = pandas.DataFrame(f).rename(columns={0: "Frequency"}) df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"}) table = pandas.concat([fd, df_pred], axis=1) # return idx, other_data_input, true_output, predicted_output return table def simple_analysis(index): net = Network("16forward_structure.json", "16forward_weights.h5") return net.analysis(index) def simple_synthesis(index): net = Network("16inverse_structure.json", "16inverse_weights.h5") pred, true = net.synthesis(index) return plotly_fig(pred), plotly_fig(true) def synthesis_from_spectrum(df): net = Network("16inverse_structure.json", "16inverse_weights.h5") pred = net.synthesis_from_spectrum(df.to_numpy()) return plotly_fig(pred) import plotly.graph_objects as go import numpy as np def performance(index): net = Network("16forward_structure.json", "16forward_weights.h5") return net.get_performance(index) def geometry(index): net = Network("16forward_structure.json", "16forward_weights.h5") values = net.get_geometry(index) return plotly_fig(values) def plotly_fig(values): X, Y, Z = np.mgrid[0:1:32j, 0:1:32j, 0:1:32j] fig = go.Figure(data=go.Volume( x=X.flatten(), y=Y.flatten(), z=Z.flatten(), value=values.flatten(), isomin=-0.1, isomax=0.8, opacity=0.1, # needs to be small to see through all surfaces surface_count=21, # needs to be a large number for good volume rendering )) return fig with gradio.Blocks() as analysis_demo: with gradio.Row(): with gradio.Column(): num = gradio.Number(42, label="data index") btn1 = gradio.Button("Select") with gradio.Column(): geo = gradio.Plot(label="Geometry") with gradio.Row(): btn2 = gradio.Button("Estimate Spectrum") with gradio.Row(): with gradio.Column(): pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted") with gradio.Column(): true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True") btn1.click(fn=geometry, inputs=[num], outputs=[geo]) btn2.click(fn=simple_analysis, inputs=[num], outputs=[pred, true]) with gradio.Blocks() as synthesis_demo: with gradio.Row(): with gradio.Column(): num = gradio.Number(42, label="data index") btn1 = gradio.Button("Select") with gradio.Column(): perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance") with gradio.Row(): btn2 = gradio.Button("Synthesize Geometry") with gradio.Row(): with gradio.Column(): pred = gradio.Plot(label="Predicted") with gradio.Column(): true = gradio.Plot(label="True") btn1.click(fn=performance, inputs=[num], outputs=[perf]) btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true]) with gradio.Blocks() as synthesis_demo2: with gradio.Row(): perf = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance") with gradio.Row(): btn2 = gradio.Button("Synthesize Geometry") with gradio.Row(): pred = gradio.Plot(label="Predicted") btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred]) with gradio.Blocks() as synthesis_demo3: with gradio.Row(): perf = gradio.DataFrame(headers=['Surge', 'Heave', 'Pitch'], value=numpy.zeros((64, 3)).tolist()) with gradio.Row(): btn2 = gradio.Button("Synthesize Geometry") with gradio.Row(): pred = gradio.Plot(label="Predicted") btn2.click(fn=synthesis_from_spectrum, inputs=[perf], outputs=[pred]) with gradio.Blocks() as intro: with gradio.Row(): with gradio.Column(): with gradio.Row(): title = gradio.Markdown("# Toward the Rapid Design of Engineered Systems Through Deep Neural Networks") with gradio.Row(): gradio.Markdown("The design of a system commits a significant portion of the final cost of that system. Many computational approaches have been developed to assist designers in the analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimization) of engineered systems. However, many of these approaches are computationally intensive, taking significant time to complete an analysis and even longer to iteratively synthesize a solution. The current work proposes a methodology for rapidly evaluating and synthesizing engineered systems through the use of deep neural networks. The proposed methodology is applied to the analysis and synthesis of offshore structures such as oil platforms. These structures are constructed in a marine environment and are typically designed to achieve specific dynamics in response to a known spectrum of ocean waves. Results show that deep learning can be used to accurately and rapidly synthesize and analyze offshore structures.\n\nThe paper linked to the left provides details about the implementation. This site contains demos of the trained networks.") with gradio.Column(): download = gradio.File(value="McComb2019_Chapter_TowardTheRapidDesignOfEngineer.pdf") all_synthesis_demos = gradio.TabbedInterface([synthesis_demo, synthesis_demo2, synthesis_demo3], ["Spectrum from Dataset", "Spectrum from File", "Spectrum from DataFrame"]) all_analysis_demos = gradio.TabbedInterface([analysis_demo], ["Geometry from Data"]) demo = gradio.TabbedInterface([intro, all_analysis_demos, all_synthesis_demos], ["About", "Analysis", "Synthesis"]) demo.launch()