Spaces:
Runtime error
Runtime error
cnstvariable
commited on
Commit
•
c34fe27
1
Parent(s):
ccb7d99
Upload 13 files
Browse files- .gitattributes +7 -33
- Dockerfile +22 -0
- README.md +1 -12
- deployment.py +180 -0
- question_extractor_model_2_11/keras_metadata.pb +3 -0
- question_extractor_model_2_11/saved_model.pb +3 -0
- question_extractor_model_2_11/variables/variables.data-00000-of-00001 +3 -0
- question_extractor_model_2_11/variables/variables.index +0 -0
- requirements.txt +8 -0
- streamlit_app.py +180 -0
- tf_gpt2_model_2_118_50000/config.json +38 -0
- tf_gpt2_model_2_118_50000/tf_model.h5 +3 -0
- train_gpt_data.pkl +3 -0
.gitattributes
CHANGED
@@ -1,34 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
|
10 |
-
*.
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
# Auto detect text files and perform LF normalization
|
2 |
+
* text=auto
|
|
|
|
|
|
|
|
|
|
|
3 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*..data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
question_extractor_model_2_11/keras_metadata.pb filter=lfs diff=lfs merge=lfs -text
|
7 |
+
question_extractor_model_2_11/saved_model.pb filter=lfs diff=lfs merge=lfs -text
|
8 |
+
train_gpt_data.pkl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/Dockerfile
|
2 |
+
|
3 |
+
FROM python:3.9-slim
|
4 |
+
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
RUN apt-get update && apt-get install -y \
|
8 |
+
build-essential \
|
9 |
+
curl \
|
10 |
+
software-properties-common \
|
11 |
+
git \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
RUN git clone https://github.com/streamlit/streamlit-example.git .
|
15 |
+
|
16 |
+
RUN pip3 install -r requirements.txt
|
17 |
+
|
18 |
+
EXPOSE 8501
|
19 |
+
|
20 |
+
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
21 |
+
|
22 |
+
ENTRYPOINT ["streamlit", "run", "streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
README.md
CHANGED
@@ -1,12 +1 @@
|
|
1 |
-
|
2 |
-
title: Med Bot
|
3 |
-
emoji: 💻
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: pink
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.17.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# med-bot-gpt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
deployment.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled0.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/13kE5uGoL2gfzSwTJli-WZolqCNBZXxNV
|
8 |
+
"""
|
9 |
+
|
10 |
+
import tensorflow as tf
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import streamlit as st
|
14 |
+
import re
|
15 |
+
import os
|
16 |
+
import csv
|
17 |
+
from tqdm import tqdm
|
18 |
+
import faiss
|
19 |
+
from nltk.translate.bleu_score import sentence_bleu
|
20 |
+
from datetime import datetime
|
21 |
+
|
22 |
+
def decontractions(phrase):
|
23 |
+
"""decontracted takes text and convert contractions into natural form.
|
24 |
+
ref: https://stackoverflow.com/questions/19790188/expanding-english-language-contractions-in-python/47091490#47091490"""
|
25 |
+
# specific
|
26 |
+
phrase = re.sub(r"won\'t", "will not", phrase)
|
27 |
+
phrase = re.sub(r"can\'t", "can not", phrase)
|
28 |
+
phrase = re.sub(r"won\’t", "will not", phrase)
|
29 |
+
phrase = re.sub(r"can\’t", "can not", phrase)
|
30 |
+
|
31 |
+
# general
|
32 |
+
phrase = re.sub(r"n\'t", " not", phrase)
|
33 |
+
phrase = re.sub(r"\'re", " are", phrase)
|
34 |
+
phrase = re.sub(r"\'s", " is", phrase)
|
35 |
+
phrase = re.sub(r"\'d", " would", phrase)
|
36 |
+
phrase = re.sub(r"\'ll", " will", phrase)
|
37 |
+
phrase = re.sub(r"\'t", " not", phrase)
|
38 |
+
phrase = re.sub(r"\'ve", " have", phrase)
|
39 |
+
phrase = re.sub(r"\'m", " am", phrase)
|
40 |
+
|
41 |
+
phrase = re.sub(r"n\’t", " not", phrase)
|
42 |
+
phrase = re.sub(r"\’re", " are", phrase)
|
43 |
+
phrase = re.sub(r"\’s", " is", phrase)
|
44 |
+
phrase = re.sub(r"\’d", " would", phrase)
|
45 |
+
phrase = re.sub(r"\’ll", " will", phrase)
|
46 |
+
phrase = re.sub(r"\’t", " not", phrase)
|
47 |
+
phrase = re.sub(r"\’ve", " have", phrase)
|
48 |
+
phrase = re.sub(r"\’m", " am", phrase)
|
49 |
+
|
50 |
+
return phrase
|
51 |
+
|
52 |
+
|
53 |
+
def preprocess(text):
|
54 |
+
# convert all the text into lower letters
|
55 |
+
# remove the words betweent brakets ()
|
56 |
+
# remove these characters: {'$', ')', '?', '"', '’', '.', '°', '!', ';', '/', "'", '€', '%', ':', ',', '('}
|
57 |
+
# replace these spl characters with space: '\u200b', '\xa0', '-', '/'
|
58 |
+
|
59 |
+
text = text.lower()
|
60 |
+
text = decontractions(text)
|
61 |
+
text = re.sub('[$)\?"’.°!;\'€%:,(/]', '', text)
|
62 |
+
text = re.sub('\u200b', ' ', text)
|
63 |
+
text = re.sub('\xa0', ' ', text)
|
64 |
+
text = re.sub('-', ' ', text)
|
65 |
+
return text
|
66 |
+
|
67 |
+
|
68 |
+
#importing bert tokenizer and loading the trained question embedding extractor model
|
69 |
+
|
70 |
+
from transformers import AutoTokenizer, TFGPT2Model
|
71 |
+
@st.cache(allow_output_mutation=True)
|
72 |
+
def return_biobert_tokenizer_model():
|
73 |
+
'''returns pretrained biobert tokenizer and question extractor model'''
|
74 |
+
biobert_tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/BioRedditBERT-uncased")
|
75 |
+
question_extractor_model1=tf.keras.models.load_model('question_extractor_model_2_11')
|
76 |
+
return biobert_tokenizer,question_extractor_model1
|
77 |
+
|
78 |
+
|
79 |
+
#importing gpt2 tokenizer and loading the trained gpt2 model
|
80 |
+
from transformers import GPT2Tokenizer,TFGPT2LMHeadModel
|
81 |
+
@st.cache(allow_output_mutation=True)
|
82 |
+
def return_gpt2_tokenizer_model():
|
83 |
+
'''returns pretrained gpt2 tokenizer and gpt2 model'''
|
84 |
+
gpt2_tokenizer=GPT2Tokenizer.from_pretrained("gpt2")
|
85 |
+
tf_gpt2_model=TFGPT2LMHeadModel.from_pretrained("tf_gpt2_model_2_118_50000")
|
86 |
+
return gpt2_tokenizer,tf_gpt2_model
|
87 |
+
|
88 |
+
#preparing the faiss search
|
89 |
+
qa=pd.read_pickle('train_gpt_data.pkl')
|
90 |
+
question_bert = qa["Q_FFNN_embeds"].tolist()
|
91 |
+
answer_bert = qa["A_FFNN_embeds"].tolist()
|
92 |
+
question_bert = np.array(question_bert)
|
93 |
+
answer_bert = np.array(answer_bert)
|
94 |
+
|
95 |
+
question_bert = question_bert.astype('float32')
|
96 |
+
answer_bert = answer_bert.astype('float32')
|
97 |
+
|
98 |
+
answer_index = faiss.IndexFlatIP(answer_bert.shape[-1])
|
99 |
+
|
100 |
+
question_index = faiss.IndexFlatIP(question_bert.shape[-1])
|
101 |
+
answer_index.add(answer_bert)
|
102 |
+
question_index.add(question_bert)
|
103 |
+
|
104 |
+
|
105 |
+
print('finished initializing')
|
106 |
+
|
107 |
+
#defining function to prepare the data for gpt inference
|
108 |
+
#https://github.com/ash3n/DocProduct
|
109 |
+
|
110 |
+
def preparing_gpt_inference_data(gpt2_tokenizer,question,question_embedding):
|
111 |
+
topk=20
|
112 |
+
scores,indices=answer_index.search(
|
113 |
+
question_embedding.astype('float32'), topk)
|
114 |
+
q_sub=qa.iloc[indices.reshape(20)]
|
115 |
+
|
116 |
+
line = '`QUESTION: %s `ANSWER: ' % (
|
117 |
+
question)
|
118 |
+
encoded_len=len(gpt2_tokenizer.encode(line))
|
119 |
+
for i in q_sub.iterrows():
|
120 |
+
line='`QUESTION: %s `ANSWER: %s ' % (i[1]['question'],i[1]['answer']) + line
|
121 |
+
line=line.replace('\n','')
|
122 |
+
encoded_len=len(gpt2_tokenizer.encode(line))
|
123 |
+
if encoded_len>=1024:
|
124 |
+
break
|
125 |
+
return gpt2_tokenizer.encode(line)[-1024:]
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
#function to generate answer given a question and the required answer length
|
130 |
+
|
131 |
+
def give_answer(question,answer_len):
|
132 |
+
preprocessed_question=preprocess(question)
|
133 |
+
question_len=len(preprocessed_question.split(' '))
|
134 |
+
truncated_question=preprocessed_question
|
135 |
+
if question_len>500:
|
136 |
+
truncated_question=' '.join(preprocessed_question.split(' ')[:500])
|
137 |
+
biobert_tokenizer,question_extractor_model1= return_biobert_tokenizer_model()
|
138 |
+
gpt2_tokenizer,tf_gpt2_model= return_gpt2_tokenizer_model()
|
139 |
+
encoded_question= biobert_tokenizer.encode(truncated_question)
|
140 |
+
max_length=512
|
141 |
+
padded_question=tf.keras.preprocessing.sequence.pad_sequences(
|
142 |
+
[encoded_question], maxlen=max_length, padding='post')
|
143 |
+
question_mask=[[1 if token!=0 else 0 for token in question] for question in padded_question]
|
144 |
+
embeddings=question_extractor_model1({'question':np.array(padded_question),'question_mask':np.array(question_mask)})
|
145 |
+
gpt_input=preparing_gpt_inference_data(gpt2_tokenizer,truncated_question,embeddings.numpy())
|
146 |
+
mask_start = len(gpt_input) - list(gpt_input[::-1]).index(4600) + 1
|
147 |
+
input=gpt_input[:mask_start+1]
|
148 |
+
if len(input)>(1024-answer_len):
|
149 |
+
input=input[-(1024-answer_len):]
|
150 |
+
gpt2_output=gpt2_tokenizer.decode(tf_gpt2_model.generate(input_ids=tf.constant([np.array(input)]),max_length=1024,temperature=0.7)[0])
|
151 |
+
answer=gpt2_output.rindex('`ANSWER: ')
|
152 |
+
return gpt2_output[answer+len('`ANSWER: '):]
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
#defining the final function to generate answer assuming default answer length to be 20
|
157 |
+
def final_func_1(question):
|
158 |
+
answer_len=25
|
159 |
+
return give_answer(question,answer_len)
|
160 |
+
|
161 |
+
|
162 |
+
def main():
|
163 |
+
st.title('Medical Chatbot')
|
164 |
+
question=st.text_input('Question',"Type Here")
|
165 |
+
result=""
|
166 |
+
if st.button('ask'):
|
167 |
+
#with st.spinner("You Know! an apple a day keeps doctor away!"):
|
168 |
+
start=datetime.now()
|
169 |
+
result=final_func_1(question)
|
170 |
+
end_time =datetime.now()
|
171 |
+
st.success("Here is the answer")
|
172 |
+
st.text(result)
|
173 |
+
st.text("result recieved within "+str((end_time-start).total_seconds()))
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
if __name__=='__main__':
|
180 |
+
main()
|
question_extractor_model_2_11/keras_metadata.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eadb8131f377ce917571a19da0e644ebb369921e2a94178c208b76937f350ea
|
3 |
+
size 150810
|
question_extractor_model_2_11/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0158efad4ac4618241e29c652d5d24c5c7a641328af6d1d9e1cd993a3274c60f
|
3 |
+
size 6893930
|
question_extractor_model_2_11/variables/variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50c81fe8ad9b3813d279bab35d6c029029183e9f5585f9bd2edc674133113cb6
|
3 |
+
size 435721428
|
question_extractor_model_2_11/variables/variables.index
ADDED
Binary file (11.8 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
Keras
|
3 |
+
opencv-python-headless
|
4 |
+
streamlit
|
5 |
+
transformers
|
6 |
+
faiss-cpu
|
7 |
+
nltk
|
8 |
+
|
streamlit_app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled0.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/13kE5uGoL2gfzSwTJli-WZolqCNBZXxNV
|
8 |
+
"""
|
9 |
+
|
10 |
+
import tensorflow as tf
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import streamlit as st
|
14 |
+
import re
|
15 |
+
import os
|
16 |
+
import csv
|
17 |
+
from tqdm import tqdm
|
18 |
+
import faiss
|
19 |
+
from nltk.translate.bleu_score import sentence_bleu
|
20 |
+
from datetime import datetime
|
21 |
+
|
22 |
+
def decontractions(phrase):
|
23 |
+
"""decontracted takes text and convert contractions into natural form.
|
24 |
+
ref: https://stackoverflow.com/questions/19790188/expanding-english-language-contractions-in-python/47091490#47091490"""
|
25 |
+
# specific
|
26 |
+
phrase = re.sub(r"won\'t", "will not", phrase)
|
27 |
+
phrase = re.sub(r"can\'t", "can not", phrase)
|
28 |
+
phrase = re.sub(r"won\’t", "will not", phrase)
|
29 |
+
phrase = re.sub(r"can\’t", "can not", phrase)
|
30 |
+
|
31 |
+
# general
|
32 |
+
phrase = re.sub(r"n\'t", " not", phrase)
|
33 |
+
phrase = re.sub(r"\'re", " are", phrase)
|
34 |
+
phrase = re.sub(r"\'s", " is", phrase)
|
35 |
+
phrase = re.sub(r"\'d", " would", phrase)
|
36 |
+
phrase = re.sub(r"\'ll", " will", phrase)
|
37 |
+
phrase = re.sub(r"\'t", " not", phrase)
|
38 |
+
phrase = re.sub(r"\'ve", " have", phrase)
|
39 |
+
phrase = re.sub(r"\'m", " am", phrase)
|
40 |
+
|
41 |
+
phrase = re.sub(r"n\’t", " not", phrase)
|
42 |
+
phrase = re.sub(r"\’re", " are", phrase)
|
43 |
+
phrase = re.sub(r"\’s", " is", phrase)
|
44 |
+
phrase = re.sub(r"\’d", " would", phrase)
|
45 |
+
phrase = re.sub(r"\’ll", " will", phrase)
|
46 |
+
phrase = re.sub(r"\’t", " not", phrase)
|
47 |
+
phrase = re.sub(r"\’ve", " have", phrase)
|
48 |
+
phrase = re.sub(r"\’m", " am", phrase)
|
49 |
+
|
50 |
+
return phrase
|
51 |
+
|
52 |
+
|
53 |
+
def preprocess(text):
|
54 |
+
# convert all the text into lower letters
|
55 |
+
# remove the words betweent brakets ()
|
56 |
+
# remove these characters: {'$', ')', '?', '"', '’', '.', '°', '!', ';', '/', "'", '€', '%', ':', ',', '('}
|
57 |
+
# replace these spl characters with space: '\u200b', '\xa0', '-', '/'
|
58 |
+
|
59 |
+
text = text.lower()
|
60 |
+
text = decontractions(text)
|
61 |
+
text = re.sub('[$)\?"’.°!;\'€%:,(/]', '', text)
|
62 |
+
text = re.sub('\u200b', ' ', text)
|
63 |
+
text = re.sub('\xa0', ' ', text)
|
64 |
+
text = re.sub('-', ' ', text)
|
65 |
+
return text
|
66 |
+
|
67 |
+
|
68 |
+
#importing bert tokenizer and loading the trained question embedding extractor model
|
69 |
+
|
70 |
+
from transformers import AutoTokenizer, TFGPT2Model
|
71 |
+
@st.cache(allow_output_mutation=True)
|
72 |
+
def return_biobert_tokenizer_model():
|
73 |
+
'''returns pretrained biobert tokenizer and question extractor model'''
|
74 |
+
biobert_tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/BioRedditBERT-uncased")
|
75 |
+
question_extractor_model1=tf.keras.models.load_model('question_extractor_model_2_11')
|
76 |
+
return biobert_tokenizer,question_extractor_model1
|
77 |
+
|
78 |
+
|
79 |
+
#importing gpt2 tokenizer and loading the trained gpt2 model
|
80 |
+
from transformers import GPT2Tokenizer,TFGPT2LMHeadModel
|
81 |
+
@st.cache(allow_output_mutation=True)
|
82 |
+
def return_gpt2_tokenizer_model():
|
83 |
+
'''returns pretrained gpt2 tokenizer and gpt2 model'''
|
84 |
+
gpt2_tokenizer=GPT2Tokenizer.from_pretrained("gpt2")
|
85 |
+
tf_gpt2_model=TFGPT2LMHeadModel.from_pretrained("tf_gpt2_model_2_118_50000")
|
86 |
+
return gpt2_tokenizer,tf_gpt2_model
|
87 |
+
|
88 |
+
#preparing the faiss search
|
89 |
+
qa=pd.read_pickle('train_gpt_data.pkl')
|
90 |
+
question_bert = qa["Q_FFNN_embeds"].tolist()
|
91 |
+
answer_bert = qa["A_FFNN_embeds"].tolist()
|
92 |
+
question_bert = np.array(question_bert)
|
93 |
+
answer_bert = np.array(answer_bert)
|
94 |
+
|
95 |
+
question_bert = question_bert.astype('float32')
|
96 |
+
answer_bert = answer_bert.astype('float32')
|
97 |
+
|
98 |
+
answer_index = faiss.IndexFlatIP(answer_bert.shape[-1])
|
99 |
+
|
100 |
+
question_index = faiss.IndexFlatIP(question_bert.shape[-1])
|
101 |
+
answer_index.add(answer_bert)
|
102 |
+
question_index.add(question_bert)
|
103 |
+
|
104 |
+
|
105 |
+
print('finished initializing')
|
106 |
+
|
107 |
+
#defining function to prepare the data for gpt inference
|
108 |
+
#https://github.com/ash3n/DocProduct
|
109 |
+
|
110 |
+
def preparing_gpt_inference_data(gpt2_tokenizer,question,question_embedding):
|
111 |
+
topk=20
|
112 |
+
scores,indices=answer_index.search(
|
113 |
+
question_embedding.astype('float32'), topk)
|
114 |
+
q_sub=qa.iloc[indices.reshape(20)]
|
115 |
+
|
116 |
+
line = '`QUESTION: %s `ANSWER: ' % (
|
117 |
+
question)
|
118 |
+
encoded_len=len(gpt2_tokenizer.encode(line))
|
119 |
+
for i in q_sub.iterrows():
|
120 |
+
line='`QUESTION: %s `ANSWER: %s ' % (i[1]['question'],i[1]['answer']) + line
|
121 |
+
line=line.replace('\n','')
|
122 |
+
encoded_len=len(gpt2_tokenizer.encode(line))
|
123 |
+
if encoded_len>=1024:
|
124 |
+
break
|
125 |
+
return gpt2_tokenizer.encode(line)[-1024:]
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
#function to generate answer given a question and the required answer length
|
130 |
+
|
131 |
+
def give_answer(question,answer_len):
|
132 |
+
preprocessed_question=preprocess(question)
|
133 |
+
question_len=len(preprocessed_question.split(' '))
|
134 |
+
truncated_question=preprocessed_question
|
135 |
+
if question_len>500:
|
136 |
+
truncated_question=' '.join(preprocessed_question.split(' ')[:500])
|
137 |
+
biobert_tokenizer,question_extractor_model1= return_biobert_tokenizer_model()
|
138 |
+
gpt2_tokenizer,tf_gpt2_model= return_gpt2_tokenizer_model()
|
139 |
+
encoded_question= biobert_tokenizer.encode(truncated_question)
|
140 |
+
max_length=512
|
141 |
+
padded_question=tf.keras.preprocessing.sequence.pad_sequences(
|
142 |
+
[encoded_question], maxlen=max_length, padding='post')
|
143 |
+
question_mask=[[1 if token!=0 else 0 for token in question] for question in padded_question]
|
144 |
+
embeddings=question_extractor_model1({'question':np.array(padded_question),'question_mask':np.array(question_mask)})
|
145 |
+
gpt_input=preparing_gpt_inference_data(gpt2_tokenizer,truncated_question,embeddings.numpy())
|
146 |
+
mask_start = len(gpt_input) - list(gpt_input[::-1]).index(4600) + 1
|
147 |
+
input=gpt_input[:mask_start+1]
|
148 |
+
if len(input)>(1024-answer_len):
|
149 |
+
input=input[-(1024-answer_len):]
|
150 |
+
gpt2_output=gpt2_tokenizer.decode(tf_gpt2_model.generate(input_ids=tf.constant([np.array(input)]),max_length=1024,temperature=0.7)[0])
|
151 |
+
answer=gpt2_output.rindex('`ANSWER: ')
|
152 |
+
return gpt2_output[answer+len('`ANSWER: '):]
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
#defining the final function to generate answer assuming default answer length to be 20
|
157 |
+
def final_func_1(question):
|
158 |
+
answer_len=25
|
159 |
+
return give_answer(question,answer_len)
|
160 |
+
|
161 |
+
|
162 |
+
def main():
|
163 |
+
st.title('Medical Chatbot')
|
164 |
+
question=st.text_input('Question',"Type Here")
|
165 |
+
result=""
|
166 |
+
if st.button('ask'):
|
167 |
+
#with st.spinner("You Know! an apple a day keeps doctor away!"):
|
168 |
+
start=datetime.now()
|
169 |
+
result=final_func_1(question)
|
170 |
+
end_time =datetime.now()
|
171 |
+
st.success("Here is the answer")
|
172 |
+
st.text(result)
|
173 |
+
st.text("result recieved within "+str((end_time-start).total_seconds()))
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
if __name__=='__main__':
|
180 |
+
main()
|
tf_gpt2_model_2_118_50000/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/kaggle/input/data45",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2LMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"bos_token_id": 50256,
|
9 |
+
"embd_pdrop": 0.1,
|
10 |
+
"eos_token_id": 50256,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"layer_norm_epsilon": 1e-05,
|
13 |
+
"model_type": "gpt2",
|
14 |
+
"n_ctx": 1024,
|
15 |
+
"n_embd": 768,
|
16 |
+
"n_head": 12,
|
17 |
+
"n_inner": null,
|
18 |
+
"n_layer": 12,
|
19 |
+
"n_positions": 1024,
|
20 |
+
"reorder_and_upcast_attn": false,
|
21 |
+
"resid_pdrop": 0.1,
|
22 |
+
"scale_attn_by_inverse_layer_idx": false,
|
23 |
+
"scale_attn_weights": true,
|
24 |
+
"summary_activation": null,
|
25 |
+
"summary_first_dropout": 0.1,
|
26 |
+
"summary_proj_to_labels": true,
|
27 |
+
"summary_type": "cls_index",
|
28 |
+
"summary_use_proj": true,
|
29 |
+
"task_specific_params": {
|
30 |
+
"text-generation": {
|
31 |
+
"do_sample": true,
|
32 |
+
"max_length": 50
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"transformers_version": "4.20.1",
|
36 |
+
"use_cache": true,
|
37 |
+
"vocab_size": 50257
|
38 |
+
}
|
tf_gpt2_model_2_118_50000/tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acb1d9c174d87de89ebb18e21b1c9aea878a2aefb49135e387e3a5fdd4abe776
|
3 |
+
size 497934896
|
train_gpt_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:944f5a6e1822cbbe49c3d4658faaa417f8207bc94cabb43c7018779c26abaee2
|
3 |
+
size 86799441
|