import json import os import shutil import requests import gradio as gr from huggingface_hub import Repository from text_generation import Client from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css HF_TOKEN = os.environ.get("HF_TOKEN", None) API_URL = "https://api-inference.huggingface.co/models/codellama/CodeLlama-7b-hf" FIM_PREFIX = "" FIM_MIDDLE = "" FIM_SUFFIX = "" FIM_INDICATOR = "" theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", radius_size=gr.themes.sizes.radius_sm, font=[ gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif", ], ) client = Client( API_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, ) def generate( prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) fim_mode = False generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) if FIM_INDICATOR in prompt: fim_mode = True try: prefix, suffix = prompt.split(FIM_INDICATOR) except: raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" stream = client.generate_stream(prompt, **generate_kwargs) if fim_mode: output = prefix else: output = prompt previous_token = "" for response in stream: if response.token.text == "<|endoftext|>": if fim_mode: output += suffix else: return output else: output += response.token.text previous_token = response.token.text yield output return output examples = [ "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score", "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {", "Poor English: She no went to the market. Corrected English:", "def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n \n else:\n results.extend(list2[i+1:])\n return results", ] def process_example(args): for x in generate(args): pass return x css = ".generating {visibility: hidden}" monospace_css = """ #q-input textarea { font-family: monospace, 'Consolas', Courier, monospace; } """ css += share_btn_css + monospace_css + ".gradio-container {color: black}" description = """

🦙 CodeLlama Playground

This is a demo to generate text and code with the following Code Llama model (7B).

Please note: This model is not designed for instruction purposes but for code completion. If you're looking for instruction or want to chat with a fine-tuned model, you can visit the Code Llama Org and select an instruct model.

""" with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: with gr.Column(): gr.Markdown(description) with gr.Row(): with gr.Column(): instruction = gr.Textbox( placeholder="Enter your code here", lines=5, label="Input", elem_id="q-input", ) submit = gr.Button("Generate", variant="primary") output = gr.Code(elem_id="q-output", lines=30, label="Output") with gr.Row(): with gr.Column(): with gr.Accordion("Advanced settings", open=False): with gr.Row(): column_1, column_2 = gr.Column(), gr.Column() with column_1: temperature = gr.Slider( label="Temperature", value=0.2, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ) max_new_tokens = gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=8192, step=64, interactive=True, info="The maximum numbers of new tokens", ) with column_2: top_p = gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ) repetition_penalty = gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=True) loading_icon = gr.HTML(loading_icon_html, visible=True) share_button = gr.Button( "Share to community", elem_id="share-btn", visible=True ) gr.Examples( examples=examples, inputs=[instruction], cache_examples=False, fn=process_example, outputs=[output], ) submit.click( generate, inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], outputs=[output], ) share_button.click(None, [], [], _js=share_js) demo.queue(concurrency_count=16).launch(debug=True)