loubnabnl HF staff commited on
Commit
9be3f4c
Β·
1 Parent(s): f1097d6
.ipynb_checkpoints/app-checkpoint.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
3
+ from transformers import pipeline
4
+ import torch
5
+ import json
6
+ import pandas as pd
7
+
8
+ @st.cache(allow_output_mutation=True)
9
+ def load_tokenizer(model_ckpt):
10
+ return AutoTokenizer.from_pretrained(model_ckpt)
11
+
12
+ @st.cache(allow_output_mutation=True)
13
+ def load_model(model_ckpt):
14
+ model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True)
15
+ return model
16
+
17
+ @st.cache()
18
+ def load_examples():
19
+ with open("examples.json", "r") as f:
20
+ examples = json.load(f)
21
+ return examples
22
+
23
+ st.set_page_config(page_icon=':laptop:', layout="wide")
24
+
25
+
26
+ st.sidebar.header("Models")
27
+ models = ["CodeParrot", "OPT", "InCoder"]
28
+ selected_models = st.sidebar.multiselect('Select code generation models to compare:',
29
+ models,
30
+ default=["CodeParrot"])
31
+ st.sidebar.header("Tasks")
32
+ tasks = [" ", "Model evaluation", "Pretraining datasets", "Model architecture", "Code generation"]
33
+ selected_task = st.sidebar.selectbox("Select a task:", tasks)
34
+
35
+
36
+ tokenizer1 = load_tokenizer("lvwerra/codeparrot")
37
+ model1 = load_model("lvwerra/codeparrot")
38
+ tokenizer2 = load_tokenizer("facebook/incoder-1B")
39
+ model2 = load_model("facebook/incoder-1B")
40
+ #tokenizer3 = load_tokenizer("facebook/opt-1.3b")
41
+ #model3 = load_model("facebook/opt-1.3b")
42
+ pipelines = {}
43
+ for element in models:
44
+ if element == "CodeParrot":
45
+ pipelines[element] = pipeline("text-generation", model=model1, tokenizer=tokenizer1)
46
+ elif element == "InCoder":
47
+ tokenizer = load_tokenizer("facebook/incoder-1B")
48
+ model = load_model("facebook/incoder-1B")
49
+ pipelines[element] = pipeline("text-generation", model=model2, tokenizer=tokenizer2)
50
+ #else:
51
+ # tokenizer = load_tokenizer("facebook/opt-1.3b")
52
+ # model = load_model("facebook/opt-1.3b")
53
+ # pipelines[element] = pipeline("text-generation", model=model3, tokenizer=tokenizer3)
54
+
55
+ examples = load_examples()
56
+ example_names = [example["name"] for example in examples]
57
+ name2id = dict([(name, i) for i, name in enumerate(example_names)])
58
+ set_seed(42)
59
+ gen_kwargs = {}
60
+
61
+ if selected_task == " ":
62
+ st.title("Code Generation Models comparison")
63
+ with open("intro.txt", "r") as f:
64
+ intro = f.read()
65
+ st.markdown(intro)
66
+ elif selected_task == "Pretraining datasets":
67
+ st.title("Pretraining datasets πŸ“š")
68
+ st.markdown("Preview of some code files from Github repositories")
69
+ df = pd.read_csv("preview-github-data.csv")
70
+ st.dataframe(df)
71
+ for model in selected_models:
72
+ with open(f"datasets/{model.lower()}.txt", "r") as f:
73
+ text = f.read()
74
+ st.markdown(f"### {model}:")
75
+ st.markdown(text)
76
+ elif selected_task == "Model architecture":
77
+ st.title("Model architecture πŸ”¨")
78
+ for model in selected_models:
79
+ with open(f"architectures/{model.lower()}.txt", "r") as f:
80
+ text = f.read()
81
+ st.markdown(f"## {model}:")
82
+ st.markdown(text)
83
+ elif selected_task == "Model evaluation":
84
+ st.title("Code models evaluation πŸ“Š")
85
+ with open("evaluation/intro.txt", "r") as f:
86
+ intro = f.read()
87
+ st.markdown(intro)
88
+ elif selected_task == "Code generation":
89
+ st.title("Code generation πŸ’»")
90
+ st.sidebar.header("Examples")
91
+ selected_example = st.sidebar.selectbox("Select one of the following examples:", example_names)
92
+ example_text = examples[name2id[selected_example]]["value"]
93
+ default_length = examples[name2id[selected_example]]["length"]
94
+ st.sidebar.header("Generation settings")
95
+ gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy:", ["Greedy", "Sample"]) == "Sample"
96
+ gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate:", value=default_length, min_value=8, step=8, max_value=256)
97
+ if gen_kwargs["do_sample"]:
98
+ gen_kwargs["temperature"] = 0.2
99
+ gen_kwargs["top_k"] = 0
100
+ gen_kwargs["top_p"] = 0.95
101
+ gen_prompt = st.text_area("Generate code with prompt:", value=example_text, height=220,).strip()
102
+ if st.button("Generate code!"):
103
+ with st.spinner("Generating code..."):
104
+ for model in selected_models:
105
+ if model != "OPT":
106
+ pipe = pipelines[model]
107
+ generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text']
108
+ st.markdown(f"{model}:")
109
+ st.code(generated_text)
app.py CHANGED
@@ -29,7 +29,7 @@ selected_models = st.sidebar.multiselect('Select code generation models to compa
29
  models,
30
  default=["CodeParrot"])
31
  st.sidebar.header("Tasks")
32
- tasks = [" ", "Model evaluation", "Pretraining dataset", "Model architecture", "Code generation"]
33
  selected_task = st.sidebar.selectbox("Select a task:", tasks)
34
 
35
 
@@ -63,7 +63,7 @@ if selected_task == " ":
63
  with open("intro.txt", "r") as f:
64
  intro = f.read()
65
  st.markdown(intro)
66
- elif selected_task == "Pretraining dataset":
67
  st.title("Pretraining datasets πŸ“š")
68
  st.markdown("Preview of some code files from Github repositories")
69
  df = pd.read_csv("preview-github-data.csv")
 
29
  models,
30
  default=["CodeParrot"])
31
  st.sidebar.header("Tasks")
32
+ tasks = [" ", "Model evaluation", "Pretraining datasets", "Model architecture", "Code generation"]
33
  selected_task = st.sidebar.selectbox("Select a task:", tasks)
34
 
35
 
 
63
  with open("intro.txt", "r") as f:
64
  intro = f.read()
65
  st.markdown(intro)
66
+ elif selected_task == "Pretraining datasets":
67
  st.title("Pretraining datasets πŸ“š")
68
  st.markdown("Preview of some code files from Github repositories")
69
  df = pd.read_csv("preview-github-data.csv")
evaluation/.ipynb_checkpoints/intro-checkpoint.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ A popular evaluatrion framework for code generation models is the [pass@k](https://huggingface.co/metrics/code_eval) metric on [HumanEval](https://huggingface.co/datasets/openai_humaneval) dataset, which was introduced in [Codex paper](https://arxiv.org/pdf/2107.03374v2.pdf). The dataset includes 164 handwritten programming problems. In the pass@k metric, k code samples are generated per problem, a problem is considered solved if any sample passes the unit tests and the total fraction of problems solved is reported. Below are some examples for the selcted models.