[CodeGen](https://huggingface.co/Salesforce/codegen-16B-mono) architecture follows a standard transformer decoder with left-to-right causal masking. With rotary position embedding for the positional encoding [(Su et al., 2021)](https://arxiv.org/abs/2104.09864), and a context length of 2048. CodeGen models are trained in various sizes.
|Model | # parameters | | - | - | | Decoder | 350M | | Decoder | 2.7B | | Decoder | 6.1B | | Decoder | 16.1B |
You can load the model and tokenizer directly from [`transformers`](https://huggingface.co/docs/transformers/index): ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-16B-mono') model = AutoModelForCausalLM.from_pretrained('Salesforce/codegen-16B-mono') inputs = tokenizer("def hello_world():", return_tensors="pt") outputs = model(**inputs) ```