import json import pandas as pd import requests from multiprocessing import Pool from functools import partial import streamlit as st GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code" INCODER_IMG = ( "https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png" ) @st.cache() def load_examples(): with open("utils/examples.json", "r") as f: examples = json.load(f) return examples def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed): url = ( f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/" ) r = requests.post( url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]} ) generated_text = r.json()["data"][0] return generated_text st.set_page_config(page_icon=":laptop:", layout="wide") st.sidebar.header("Models") models = ["CodeParrot", "InCoder"] selected_models = st.sidebar.multiselect( "Select code generation models to compare", models, default=["CodeParrot"] ) st.sidebar.header("Tasks") tasks = [ " ", "Pretraining datasets", "Model architecture", "Model evaluation", "Code generation", ] selected_task = st.sidebar.selectbox("Select a task", tasks) if selected_task == " ": st.title("Code Generation Models") with open("utils/intro.txt", "r") as f: intro = f.read() st.markdown(intro)