codeslake commited on
Commit
2e734d0
·
1 Parent(s): 4ce1009

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -23
app.py CHANGED
@@ -50,8 +50,9 @@ def resize(img):
50
  img = img.resize((wsize,hsize), Image.ANTIALIAS)
51
  return img
52
 
 
53
  ## inference
54
- def inference(LR, Ref):
55
  ## resize for user selected input (not used)
56
  #LR = resize(LR)
57
  #Ref = resize(Ref)
@@ -66,35 +67,35 @@ def inference(LR, Ref):
66
 
67
  ## Run RefVSR model
68
  os.system("python -B run.py \
69
- --mode RefVSR_MFID \
70
- --config config_RefVSR_MFID \
71
  --data RealMCVSR \
72
- --ckpt_abs_name ckpt/RefVSR_MFID.pytorch \
73
  --data_offset ./test \
74
  --output_offset ./result \
75
  --qualitative_only \
76
  --cpu \
77
- --is_gradio")
78
  return "result/0000.png"
79
-
80
  title="RefVSR"
81
- description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 150s."
82
 
83
- article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained by the proposed pre-training strategy only. The sample frames are in 430x270 resolution and saved in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
84
 
85
  ## resize for sample (not used)
86
  #LR = resize(Image.open('LR.png')).save('LR.png')
87
  #Ref = resize(Image.open('Ref.png')).save('Ref.png')
88
 
89
  ## input
90
- examples=[['LR.png', 'Ref.png']]
91
 
92
  ## interface
93
- gr.Interface(inference,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
94
-
95
- #################### 8K ##################
96
  ## inference
97
- def inference_8K(LR, Ref):
98
  ## resize for user selected input (not used)
99
  #LR = resize(LR)
100
  #Ref = resize(Ref)
@@ -109,28 +110,29 @@ def inference_8K(LR, Ref):
109
 
110
  ## Run RefVSR model
111
  os.system("python -B run.py \
112
- --mode amp_RefVSR_small_MFID_8K \
113
- --config config_RefVSR_small_MFID_8K \
114
  --data RealMCVSR \
115
- --ckpt_abs_name ckpt/RefVSR_small_MFID_8K.pytorch \
116
  --data_offset ./test \
117
  --output_offset ./result \
118
  --qualitative_only \
119
  --cpu \
120
- --is_gradio")
121
  return "result/0000.png"
122
-
123
- title="RefVSR | Slow inference with a real-world HD (1920x1080) frame"
124
- description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 120s."
125
 
126
- article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained by the proposed two-stage training strategy. The sample frames are in HD resolution (1920x1080) and saved in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
 
 
 
127
 
128
  ## resize for sample (not used)
129
  #LR = resize(Image.open('LR.png')).save('LR.png')
130
  #Ref = resize(Image.open('Ref.png')).save('Ref.png')
131
 
132
  ## input
133
- examples=[['HR_LR.png', 'HR_Ref.png']]
134
 
135
  ## interface
136
- gr.Interface(inference_8K,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
 
 
50
  img = img.resize((wsize,hsize), Image.ANTIALIAS)
51
  return img
52
 
53
+ #################### 8K ##################
54
  ## inference
55
+ def inference_8K(LR, Ref):
56
  ## resize for user selected input (not used)
57
  #LR = resize(LR)
58
  #Ref = resize(Ref)
 
67
 
68
  ## Run RefVSR model
69
  os.system("python -B run.py \
70
+ --mode RefVSR_MFID_8K \
71
+ --config config_RefVSR_MFID_8K \
72
  --data RealMCVSR \
73
+ --ckpt_abs_name ckpt/RefVSR_MFID_8K.pytorch \
74
  --data_offset ./test \
75
  --output_offset ./result \
76
  --qualitative_only \
77
  --cpu \
78
+ --is_gradio")
79
  return "result/0000.png"
80
+
81
  title="RefVSR"
82
+ description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 120s."
83
 
84
+ article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained by the proposed two-stage training strategy. The sample frames are in HD resolution (1920x1080) and saved in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
85
 
86
  ## resize for sample (not used)
87
  #LR = resize(Image.open('LR.png')).save('LR.png')
88
  #Ref = resize(Image.open('Ref.png')).save('Ref.png')
89
 
90
  ## input
91
+ examples=[['HR_LR.png', 'HR_Ref.png']]
92
 
93
  ## interface
94
+ gr.Interface(inference_8K,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
95
+
96
+ #################### low res ##################
97
  ## inference
98
+ def inference(LR, Ref):
99
  ## resize for user selected input (not used)
100
  #LR = resize(LR)
101
  #Ref = resize(Ref)
 
110
 
111
  ## Run RefVSR model
112
  os.system("python -B run.py \
113
+ --mode RefVSR_MFID \
114
+ --config config_RefVSR_MFID \
115
  --data RealMCVSR \
116
+ --ckpt_abs_name ckpt/RefVSR_MFID.pytorch \
117
  --data_offset ./test \
118
  --output_offset ./result \
119
  --qualitative_only \
120
  --cpu \
121
+ --is_gradio")
122
  return "result/0000.png"
 
 
 
123
 
124
+ title="RefVSR"
125
+ description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 150s."
126
+
127
+ article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained by the proposed pre-training strategy only. The sample frames are in 430x270 resolution and saved in the PNG format. </p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
128
 
129
  ## resize for sample (not used)
130
  #LR = resize(Image.open('LR.png')).save('LR.png')
131
  #Ref = resize(Image.open('Ref.png')).save('Ref.png')
132
 
133
  ## input
134
+ examples=[['LR.png', 'Ref.png']]
135
 
136
  ## interface
137
+ gr.Interface(inference,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
138
+