codeslake commited on
Commit
456ec06
·
1 Parent(s): 5ef0884

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -44,7 +44,7 @@ os.makedirs('result')
44
 
45
  ## resize if necessary (not used)
46
  def resize(img):
47
- max_side = 430
48
  w = img.size[0]
49
  h = img.size[1]
50
  if max(h, w) > max_side:
@@ -82,7 +82,7 @@ def inference(LR, Ref):
82
  --is_gradio")
83
  return "result/0000.png"
84
 
85
- title="RefVSR | 4xSR on a single low-resolution frame (480x270)"
86
  description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 150s."
87
 
88
  article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained by the proposed pre-training strategy only. The sample frames are in 480x270 resolution and saved in the PNG format</p><p style='text-align: center'>For user given frames, the size will be adjusted for the longer side to have 480 pixels.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
 
44
 
45
  ## resize if necessary (not used)
46
  def resize(img):
47
+ max_side = 480
48
  w = img.size[0]
49
  h = img.size[1]
50
  if max(h, w) > max_side:
 
82
  --is_gradio")
83
  return "result/0000.png"
84
 
85
+ title="RefVSR | 4xVSR"
86
  description="Demo application for Reference-based Video Super-Resolution (RefVSR). Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively. The demo runs on CPUs and takes about 150s."
87
 
88
  article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is trained by the proposed pre-training strategy only. The sample frames are in 480x270 resolution and saved in the PNG format</p><p style='text-align: center'>For user given frames, the size will be adjusted for the longer side to have 480 pixels.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"