Spaces:
Runtime error
Runtime error
File size: 14,803 Bytes
6a5443d 094fd02 6a5443d 094fd02 6a5443d 620584c 6a5443d 620584c 6a5443d 094fd02 6a5443d 094fd02 6a5443d 620584c 6a5443d 620584c 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 094fd02 6a5443d 620584c 9c01b28 1806b2c 9c01b28 6a5443d 094fd02 6a5443d 094fd02 6a5443d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import gradio as gr
import numpy as np
import os, tempfile
import torch
import py3Dmol
from huggingface_hub import login
from esm.utils.structure.protein_chain import ProteinChain
from esm.models.esm3 import ESM3
from esm.sdk.api import (
ESMProtein,
GenerationConfig,
)
from gradio_molecule3d import Molecule3D
theme = gr.themes.Monochrome(
primary_hue="gray",
)
## Function to get model from Hugging Face using token
def get_model(model_name, token):
login(token=token)
if torch.cuda.is_available():
model = ESM3.from_pretrained(model_name, device=torch.device("cuda"))
else:
model = ESM3.from_pretrained(model_name, device=torch.device("cpu"))
# model = ESM3.from_pretrained(model_name, device=torch.device("cpu"))
return model
## Function to get PDB data
def get_pdb(pdb_id, chain_id):
pdb = ProteinChain.from_rcsb(pdb_id, chain_id)
# return [pdb.sequence, render_pdb(pdb.to_pdb_string())]
return pdb
## Function to generate rep for 3D structure
def make_reps(res_start=None, res_end=None, main_color="whiteCarbon", highlight_color="redCarbon", main_style="cartoon", highlight_style="cartoon"):
residue_range = f"{res_start}-{res_end}" if res_start != res_end else ""
return [
{
"model": 0,
"chain": "",
"resname": "",
"style": main_style,
"color": main_color,
"residue_range": "",
"around": 0,
"byres": False,
"visible": True
},
{
"model": 0,
"chain": "",
"resname": "",
"style": highlight_style,
"color": highlight_color,
"residue_range": residue_range,
"around": 0,
"byres": False,
"visible": True
}]
## Function to render 3D structure
def render_pdb(pdb_id, chain_id, res_start, res_end, pdb_string=None):
if pdb_string is None:
pdb_string = get_pdb(pdb_id, chain_id).to_pdb_string()
## Write to temporary file and read back in to get the 3D structure
tmp_pdb = tempfile.NamedTemporaryFile(delete=False, prefix=f"{pdb_id}_chain{chain_id}_", suffix=".pdb")
tmp_pdb.write(str.encode(pdb_string))
return Molecule3D(tmp_pdb.name, reps=make_reps(res_start=res_start, res_end=res_end))
## Function for Scaffolding
def scaffold(model_name, token, pdb_id, chain_id, motif_start, motif_end, prompt_length, insert_size):
pdb = get_pdb(pdb_id, chain_id)
## Get motif sequence and atom37 positions
motif_inds = np.arange(motif_start, motif_end)
motif_sequence = pdb[motif_inds].sequence
motif_atom37_positions = pdb[motif_inds].atom37_positions
## Create sequence prompt
sequence_prompt = ["_"]*prompt_length
sequence_prompt[insert_size:insert_size+len(motif_sequence)] = list(motif_sequence)
sequence_prompt = "".join(sequence_prompt)
## Create structure prompt
structure_prompt = torch.full((prompt_length, 37, 3), np.nan)
structure_prompt[insert_size:insert_size+len(motif_atom37_positions)] = torch.tensor(motif_atom37_positions)
## Create protein prompt and sequence generation config
protein_prompt = ESMProtein(sequence=sequence_prompt, coordinates=structure_prompt)
sequence_generation_config = GenerationConfig(track="sequence",
num_steps=sequence_prompt.count("_") // 2,
temperature=0.5)
## Generate sequence
model = get_model(model_name, token)
sequence_generation = model.generate(protein_prompt, sequence_generation_config)
generated_sequence = sequence_generation.sequence
## Generate structure
structure_prediction_config = GenerationConfig(
track="structure", # We want ESM3 to generate tokens for the structure track
num_steps=len(sequence_generation) // 8,
temperature=0.7,
)
structure_prediction_prompt = ESMProtein(sequence=sequence_generation.sequence)
structure_prediction = model.generate(structure_prediction_prompt, structure_prediction_config)
## Convert the generated structure to a back into a ProteinChain object
structure_prediction_chain = structure_prediction.to_protein_chain()
motif_inds_in_generation = np.arange(insert_size, insert_size+len(motif_sequence))
structure_prediction_chain.align(pdb, mobile_inds=motif_inds_in_generation, target_inds=motif_inds)
# crmsd = structure_prediction_chain.rmsd(renal_dipep_chain, mobile_inds=motif_inds_in_generation, target_inds=motif_inds)
structure_orig_highlight = render_pdb(pdb_id, chain_id, res_start=motif_start, res_end=motif_end)
structure_new_highlight = render_pdb(pdb_id, chain_id, res_start=insert_size, res_end=insert_size+len(motif_sequence),
pdb_string=structure_prediction_chain.to_pdb_string())
return [
pdb.sequence,
motif_sequence,
structure_orig_highlight,
# motif_atom37_positions,
sequence_prompt,
# structure_prompt,
# protein_prompt
generated_sequence,
# structure_prediction,
# structure_prediction_chain,
structure_new_highlight
]
## Function for Secondary Structure Editing
def ss_edit(model_name, token, pdb_id, chain_id, region_start, region_end, shortened_region_length, shortening_ss8):
pdb = get_pdb(pdb_id, chain_id)
edit_region = np.arange(region_start, region_end)
## Construct a sequence prompt that masks the (shortened) helix-coil-helix region, but leaves the flanking regions unmasked
sequence_prompt = pdb.sequence[:edit_region[0]] + "_" * shortened_region_length + pdb.sequence[edit_region[-1] + 1:]
## Construct a secondary structure prompt that retains the secondary structure of the flanking regions, and shortens the lengths of helices in the helix-coil-helix region
ss8_prompt = shortening_ss8[:edit_region[0]] + (((shortened_region_length - 3) // 2) * "H" + "C"*3 + ((shortened_region_length - 3) // 2) * "H") + shortening_ss8[edit_region[-1] + 1:]
## Save original sequence and secondary structure
original_sequence = pdb.sequence
original_ss8 = shortening_ss8
original_ss8_region = " "*edit_region[0] + shortening_ss8[edit_region[0]:edit_region[-1]+1]
proposed_ss8_region = " "*edit_region[0] + ss8_prompt[edit_region[0]:edit_region[0]+shortened_region_length]
## Create protein prompt
protein_prompt = ESMProtein(sequence=sequence_prompt, secondary_structure=ss8_prompt)
## Generatre sequence
model = get_model(model_name, token)
sequence_generation = model.generate(protein_prompt, GenerationConfig(track="sequence", num_steps=protein_prompt.sequence.count("_") // 2, temperature=0.5))
## Generate structure
structure_prediction = model.generate(ESMProtein(sequence=sequence_generation.sequence), GenerationConfig(track="structure", num_steps=len(protein_prompt) // 4, temperature=0))
structure_prediction_chain = structure_prediction.to_protein_chain()
structure_orig_highlight = render_pdb(pdb_id, chain_id, res_start=region_start, res_end=region_end)
structure_new_highlight = render_pdb(pdb_id, chain_id, res_start=region_start, res_end=region_end,
pdb_string=structure_prediction_chain.to_pdb_string())
return [
original_sequence,
original_ss8,
original_ss8_region,
structure_orig_highlight,
sequence_prompt,
ss8_prompt,
proposed_ss8_region,
# protein_prompt,
sequence_generation,
structure_new_highlight
]
## Function for SASA Editing
def sasa_edit(model_name, token, pdb_id, chain_id, span_start, span_end, n_samples):
pdb = get_pdb(pdb_id, chain_id)
structure_prompt = torch.full((len(pdb), 37, 3), torch.nan)
structure_prompt[span_start:span_end] = torch.tensor(pdb[span_start:span_end].atom37_positions, dtype=torch.float32)
sasa_prompt = [None]*len(pdb)
sasa_prompt[span_start:span_end] = [40.0]*(span_end - span_start)
protein_prompt = ESMProtein(sequence="_"*len(pdb), coordinates=structure_prompt, sasa=sasa_prompt)
model = get_model(model_name, token)
generated_proteins = []
for i in range(n_samples):
## Generate sequence
sequence_generation = model.generate(protein_prompt, GenerationConfig(track="sequence", num_steps=len(protein_prompt) // 8, temperature=0.7))
## Fold Protein
structure_prediction = model.generate(ESMProtein(sequence=sequence_generation.sequence), GenerationConfig(track="structure", num_steps=len(protein_prompt) // 32))
generated_proteins.append(structure_prediction)
## Sort generations by ptm
generated_proteins = sorted(generated_proteins, key=lambda x: x.ptm.item(), reverse=True)
structure_orig_highlight = render_pdb(pdb_id, chain_id, res_start=span_start, res_end=span_end)
structure_new_highlight = render_pdb(pdb_id, chain_id, res_start=span_start, res_end=span_end,
pdb_string=generated_proteins[0].to_protein_chain().to_pdb_string())
return [
protein_prompt.sequence,
structure_orig_highlight,
[seq.sequence for seq in sequence_generation],
# [pro.sequence for pro in generated_proteins]
structure_new_highlight
]
## Interface for main Scaffolding Example
scaffold_app = gr.Interface(
fn=scaffold,
inputs=[
gr.Dropdown(label="Model Name", choices=["esm3_sm_open_v1"], value="esm3_sm_open_v1", allow_custom_value=True),
gr.Textbox(value = "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", label="Hugging Face Token", type="password"),
gr.Textbox(value="1ITU", label = "PDB Code"),
gr.Textbox(value="A", label = "Chain"),
gr.Number(value=123, label="Motif Start"),
gr.Number(value=146, label="Motif End"),
gr.Number(value=200, label="Prompt Length"),
gr.Number(value=72, label="Insert Size")
],
outputs=[
gr.Textbox(label="Sequence"),
gr.Textbox(label="Motif Sequence"),
Molecule3D(label="Original Structure"),
# gr.Textbox(label="Motif Positions")
gr.Textbox(label="Sequence Prompt"),
# gr.Textbox(label="Structure Prompt"),
# gr.Textbox(label="Protein Prompt"),
gr.Textbox(label="Generated Sequence"),
Molecule3D(label="Generated Structure")
]
)
## Interface for "Secondary Structure Editing Example: Helix Shortening"
ss_app = gr.Interface(
fn=ss_edit,
inputs=[
gr.Dropdown(label="Model Name", choices=["esm3_sm_open_v1"], value="esm3_sm_open_v1", allow_custom_value=True),
gr.Textbox(value = "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", label="Hugging Face Token", type="password"),
gr.Textbox(value = "7XBQ", label="PDB ID"),
gr.Textbox(value = "A", label="Chain ID"),
gr.Number(value=38, label="Edit Region Start"),
gr.Number(value=111, label="Edit Region End"),
gr.Number(value=45, label="Shortened Region Length"),
gr.Textbox(value="CCCSHHHHHHHHHHHTTCHHHHHHHHHHHHHTCSSCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHTTCHHHHHHHHHHHHHHHHHHHHHHHHHHHHIIIIIGGGCCSHHHHHHHHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHHHHHHHHHHHHSCTTCHHHHHHHHHHHHHIIIIICCHHHHHHHHHHHHHHHHTTCTTCCSSHHHHHHHHHHHHHHHHHHHC", label="SS8 Shortening")
],
outputs=[
gr.Textbox(label="Original Sequence"),
gr.Textbox(label="Original SS8"),
gr.Textbox(label="Original SS8 Edit Region"),
Molecule3D(label="Original Structure"),
gr.Textbox(label="Sequence Prompt"),
gr.Textbox(label="Edited SS8 Prompt"),
gr.Textbox(label="Proposed SS8 of Edit Region"),
# gr.Textbox(label="Protein Prompt"),
gr.Textbox(label="Generated Sequence"),
Molecule3D(label="Generated Structure")
]
)
## Interface for "SASA Editing Example: Exposing a buried helix"
sasa_app = gr.Interface(
fn=sasa_edit,
inputs=[
gr.Dropdown(label="Model Name", choices=["esm3_sm_open_v1"], value="esm3_sm_open_v1", allow_custom_value=True),
gr.Textbox(value = "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", label="Hugging Face Token", type="password"),
gr.Textbox(value = "1LBS", label="PDB ID"),
gr.Textbox(value = "A", label="Chain ID"),
gr.Number(value=105, label="Span Start"),
gr.Number(value=116, label="Span End"),
# gr.Textbox(value="CCSSCCCCSSCHHHHHHTEEETTBBTTBCSSEEEEECCTTCCHHHHHTTTHHHHHHHTTCEEEEECCTTTTCSCHHHHHHHHHHHHHHHHHHTTSCCEEEEEETHHHHHHHHHHHHCGGGGGTEEEEEEESCCTTCBGGGHHHHHTTCBCHHHHHTBTTCHHHHHHHHTTTTBCSSCEEEEECTTCSSSCCCCSSSTTSTTCCBTSEEEEHHHHHCTTCCCCSHHHHHBHHHHHHHHHHHHCTTSSCCGGGCCSTTCCCSBCTTSCHHHHHHHHSTHHHHHHHHHHSCCBSSCCCCCGGGGGGSTTCEETTEECCC", label="SS8 String")
gr.Number(value=1, label="Number of Samples")
],
outputs = [
gr.Textbox(label="Protein Prompt"),
Molecule3D(label="Original Structure"),
gr.Textbox(label="Generated Sequences"),
# gr.Textbox(label="Generated Proteins")
Molecule3D(label="Best Generated Structure")
]
)
protein_viewer = gr.Interface(
fn=render_pdb,
inputs=[
gr.Textbox(value = "1LBS", label="PDB ID"),
gr.Textbox(value = "A", label="Chain ID"),
gr.Number(value=10, label="Residue Highlight Start"),
gr.Number(value=20, label="Residue Highlight End")
],
outputs=[
Molecule3D(label="3D Structure")
]
)
## Main Interface
with gr.Blocks(theme=theme) as esm_app:
with gr.Row():
gr.Markdown(
"""
# ESM3: A frontier language model for biology.
Model Created By: [EvolutionaryScale](https://www.evolutionaryscale.ai)
- Press Release: https://www.evolutionaryscale.ai/blog/esm3-release
- GitHub: https://github.com/evolutionaryscale/esm
- HuggingFace Model: https://huggingface.co/EvolutionaryScale/esm3-sm-open-v1
Spaces App By: [[Colby T. Ford](https://colbyford.com)] from [Tuple, The Cloud Genomics Company](https://tuple.xyz)
NOTE: You will need to agree to EvolutionaryScale's [license agreement](https://huggingface.co/EvolutionaryScale/esm3-sm-open-v1) to use the model. Then, create and paste your HuggingFace token in the appropriate field.
"""
)
with gr.Row():
gr.TabbedInterface([
scaffold_app,
ss_app,
sasa_app,
protein_viewer
],
[
"Scaffolding Example",
"Secondary Structure Editing Example",
"SASA Editing Example",
"PDB Viewer"
])
if __name__ == "__main__":
esm_app.launch()
|