File size: 5,316 Bytes
741514a
 
 
 
 
 
 
 
 
 
 
 
 
612a3dc
741514a
612a3dc
 
 
 
 
 
 
741514a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fa8f2f
0aba3a7
741514a
 
 
 
 
 
 
 
 
5fa8f2f
741514a
 
 
 
 
 
 
 
612a3dc
741514a
 
 
 
 
 
612a3dc
741514a
 
0aba3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612a3dc
0aba3a7
741514a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fa8f2f
 
 
612a3dc
 
0aba3a7
5fa8f2f
 
612a3dc
 
741514a
 
 
 
5fa8f2f
0aba3a7
5fa8f2f
741514a
 
 
 
 
 
5fa8f2f
 
 
741514a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
Credit to Derek Thomas, [email protected]
"""
import os
import logging
from pathlib import Path
from time import perf_counter

import gradio as gr
from jinja2 import Environment, FileSystemLoader

from backend.query_llm import generate_hf, generate_openai
from backend.semantic_search import retrieve
import itertools

emb_models = ["bge", "minilm"]
splitters = ['ct', 'rct', 'nltk']
chunk_sizes = ["500", "2000"]
sub_vectors = ["8", "16", "32"]

# Create all combinations of the provided arrays
combinations = itertools.product(emb_models, splitters, chunk_sizes, sub_vectors)

TOP_K = int(os.getenv("TOP_K", 4))

proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')


def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def bot(history, api_kind,
            num_docs, model_kind, sub_vector_size, chunk_size, splitter_type, all_at_once):
    query = history[-1][0]

    if not query:
        raise gr.Warning("Please submit a non-empty string as a prompt")

    logger.info('Retrieving documents...')
    # Retrieve documents relevant to query
    document_start = perf_counter()

    documents = retrieve(query, int(num_docs), model_kind, sub_vector_size, chunk_size, splitter_type)

    document_time = perf_counter() - document_start
    logger.info(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')

    # Create Prompt
    prompt = template.render(documents=documents, query=query)
    prompt_html = template_html.render(documents=documents, query=query)


    if api_kind == "HuggingFace":
         generate_fn = generate_hf
    elif api_kind == "OpenAI":
         generate_fn = generate_openai
    else:
         raise gr.Error(f"API {api_kind} is not supported")
    

    history[-1][1] = ""
    if all_at_once:
        for model_name, doc, size, sub_vector in combinations:
            documents_i = retrieve(query, int(num_docs), model_name, sub_vector, size, doc)
            prompt_i = template.render(documents=documents_i, query=query)
            prompt_html = template_html.render(documents=documents, query=query)
            
            hist_chunk = ""
            prev_hist = history[-1][1] + f"\nmodel {model_name}, splitter {doc}, size {size}, sub vector {sub_vector}\n"
            for character in generate_fn(prompt_i, history[:-1]):
                hist_chunk = character
                history[-1][1] = prev_hist + hist_chunk
                yield history, prompt_html
    else:
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character
            yield history, prompt_html
    

with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
            [],
            elem_id="chatbot",
            avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                           'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
            bubble_full_width=False,
            show_copy_button=True,
            show_share_button=True,
            )

    with gr.Row():
        txt = gr.Textbox(
                scale=3,
                show_label=False,
                placeholder="Enter text and press enter",
                container=False,
                )
        txt_btn = gr.Button(value="Submit text", scale=1)


    with gr.Row():
        num_docs = gr.Slider(1, 20, label="number of docs", step=1, value=4)
        model_kind = gr.Radio(choices=emb_models, value="bge", label="embedding model")
        sub_vector_size = gr.Radio(choices=sub_vectors, value="32", label="sub-vector size")
        all_at_once = gr.Checkbox(value=False, label="Run all at once")
    with gr.Row():
        api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace", label="Chat model engine")
        chunk_size = gr.Radio(choices=chunk_sizes, value="2000", label="chunk size")
        splitter_type = gr.Radio(choices=splitters, value="nltk", label="splitter")

    prompt_html = gr.HTML()
    # Turn off interactivity while generating if you click
    txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, api_kind,
            num_docs, model_kind, sub_vector_size, chunk_size, splitter_type, all_at_once
            ], [chatbot, prompt_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Turn off interactivity while generating if you hit enter
    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, api_kind,
            num_docs, model_kind, sub_vector_size, chunk_size, splitter_type
            ], [chatbot, prompt_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

demo.queue()
demo.launch(debug=True)