File size: 1,165 Bytes
741514a
 
 
 
 
 
 
 
5fa8f2f
 
 
 
 
 
 
 
741514a
 
 
 
 
5fa8f2f
 
 
741514a
5fa8f2f
 
 
 
 
741514a
 
5fa8f2f
 
 
741514a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import lancedb
import os
import gradio as gr
from sentence_transformers import SentenceTransformer


db = lancedb.connect(".lancedb")

tables = {}

def table(tname):
    if not tname in tables:
        tables[tname] = db.open_table(tname)
    return tables[tname]


TABLE = db.open_table(os.getenv("TABLE_NAME"))
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector")
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text")
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32))

retriever_bge = SentenceTransformer("BAAI/bge-large-en-v1.5")
retriever_minilm = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")


def retrieve(query, k, model_kind, sub_vector_size, chunk_size, splitter_type):
    if model_kind == "bge":
        query_vec = retriever_bge.encode(query)
    else:
        query_vec = retriever_minilm.encode(query)

    try:
        documents = table(
            f"{splitter_type}_{model_kind}_{sub_vector_size}_{chunk_size}",
            ).search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list()
        documents = [doc[TEXT_COLUMN] for doc in documents]

        return documents

    except Exception as e:
        raise gr.Error(str(e))