Spaces:
Runtime error
Runtime error
File size: 7,632 Bytes
741514a 7588eb3 741514a 612a3dc d3fc948 741514a cb68ee9 d3fc948 b2ad5ed d3fc948 1110d46 cb68ee9 1110d46 cb68ee9 7588eb3 612a3dc 741514a dbf2edc 741514a 7588eb3 0aba3a7 741514a 7588eb3 741514a d3fc948 cb68ee9 d3fc948 741514a 5dedbfc 741514a 5dedbfc 612a3dc 741514a 0aba3a7 7588eb3 0aba3a7 dbf2edc 7588eb3 0aba3a7 7588eb3 0aba3a7 612a3dc 0aba3a7 741514a 5fa8f2f 7588eb3 612a3dc 7588eb3 741514a 7588eb3 5fa8f2f 741514a 7588eb3 aa023ea 7588eb3 5fa8f2f 741514a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
"""
Credit to Derek Thomas, [email protected]
"""
import os
import logging
from pathlib import Path
from time import perf_counter
import gradio as gr
from jinja2 import Environment, FileSystemLoader
from backend.query_llm import generate_hf, generate_openai, hf_models, openai_models
from backend.semantic_search import retrieve
import itertools
from gradio_client import Client
clients_eps = {
"wizardlm 13B": "https://itsmynti-ehartford-wizardlm-13b-uncensored.hf.space/",
"mistral 7b v0.1": "https://zhuraavl-mistralai-mistral-7b-v0-1.hf.space/",
}
clients = {k: Client(u) for k,u in clients_eps.items()}
client = Client("Be-Bo/llama-3-chatbot_70b")
def run_llama(_, msg, *__):
yield client.predict(
message=msg,
api_name="/chat"
)
def run_client(cli_name, msg, *__):
yield clients[cli_name].predict(
msg,
api_name="/predict"
)
inf_models = list(hf_models.keys()) + list(openai_models) + list(clients_eps.keys())
emb_models = ["bge", "minilm"]
splitters = ['ct', 'rct', 'nltk']
chunk_sizes = ["500", "2000"]
sub_vectors = ["8", "16", "32"]
# Create all combinations of the provided arrays
combinations = itertools.product(emb_models, splitters, chunk_sizes, sub_vectors)
TOP_K = int(os.getenv("TOP_K", 4))
proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
def add_text(history, text):
history = [] if history is None else history
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def has_balanced_backticks(markdown_str):
in_code_block = False
lines = markdown_str.split('\n')
for line in lines:
stripped_line = line.strip()
# Check if the line contains triple backticks
if stripped_line.startswith("```"):
# Toggle the in_code_block flag
in_code_block = not in_code_block
# If in_code_block is False at the end, all backticks are balanced
return not in_code_block
def bot(history, model_name, oepnai_api_key,
reranker_enabled,reranker_kind,num_prerank_docs,
num_docs, model_kind, sub_vector_size, chunk_size, splitter_type, all_at_once):
query = history[-1][0]
if not query:
raise gr.Warning("Please submit a non-empty string as a prompt")
logger.info('Retrieving documents...')
# Retrieve documents relevant to query
document_start = perf_counter()
if reranker_enabled:
documents = retrieve(query, int(num_docs), model_kind, sub_vector_size, chunk_size, splitter_type,reranker_kind,num_prerank_docs)
else:
documents = retrieve(query, int(num_docs), model_kind, sub_vector_size, chunk_size, splitter_type)
document_time = perf_counter() - document_start
logger.info(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
# Create Prompt
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
if model_name == "llama 3":
generate_fn = run_llama
if model_name in clients_eps:
generate_fn = run_client
elif model_name in hf_models:
generate_fn = generate_hf
elif model_name in openai_models:
generate_fn = generate_openai
else:
raise gr.Error(f"Model {model_name} is not supported")
history[-1][1] = ""
if all_at_once:
for emb_model, doc, size, sub_vector in combinations:
documents_i = retrieve(query, int(num_docs), emb_model, sub_vector, size, doc)
prompt_i = template.render(documents=documents_i, query=query)
prompt_html = template_html.render(documents=documents, query=query)
hist_chunk = ""
prev_hist = history[-1][1]
if not has_balanced_backticks(prev_hist):
prev_hist += "\n```\n"
prev_hist += f"\n\n## model {emb_model}, splitter {doc}, size {size}, sub vector {sub_vector}\n\n"
for character in generate_fn(model_name, prompt_i, history[:-1], oepnai_api_key):
hist_chunk = character
history[-1][1] = prev_hist + hist_chunk
yield history, prompt_html
else:
for character in generate_fn(model_name, prompt, history[:-1], oepnai_api_key):
history[-1][1] = character
yield history, prompt_html
with gr.Blocks() as demo:
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
with gr.Row():
emb_model_kind = gr.Radio(choices=emb_models, value="bge", label="embedding model")
sub_vector_size = gr.Radio(choices=sub_vectors, value="32", label="sub-vector size")
chunk_size = gr.Radio(choices=chunk_sizes, value="2000", label="chunk size")
splitter_type = gr.Radio(choices=splitters, value="nltk", label="splitter")
with gr.Row():
reranker_enabled = gr.Checkbox(value=False, label="Reranker enabled")
reranker_kind = gr.Radio(choices=emb_models, value="bge", label="Reranker model")
num_prerank_docs = gr.Slider(5, 80, label="Number of docs before reranker", step=1, value=20)
with gr.Row():
num_docs = gr.Slider(1, 20, label="number of docs", step=1, value=4)
all_at_once = gr.Checkbox(value=False, label="Run all at once")
model_name = gr.Radio(choices=inf_models, value=inf_models[0], label="Chat model")
oepnai_api_key = gr.Textbox(
show_label=False,
placeholder="OpenAI API key",
container=False,
)
prompt_html = gr.HTML()
# Turn off interactivity while generating if you click
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, model_name, oepnai_api_key,
reranker_enabled,reranker_kind,num_prerank_docs,
num_docs, emb_model_kind, sub_vector_size, chunk_size, splitter_type, all_at_once
], [chatbot, prompt_html])
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# Turn off interactivity while generating if you hit enter
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, model_name,
reranker_enabled,reranker_kind,num_prerank_docs,
num_docs, emb_model_kind, sub_vector_size, chunk_size, splitter_type
], [chatbot, prompt_html])
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
demo.queue()
demo.launch(debug=True)
|