File size: 7,238 Bytes
741514a
 
 
 
 
 
 
 
 
 
 
7588eb3
741514a
612a3dc
d3fc948
741514a
cb68ee9
d3fc948
 
b342136
b2ad5ed
d3fc948
 
 
1110d46
47c1d0e
7588eb3
612a3dc
 
 
 
 
 
 
741514a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf2edc
 
 
 
 
 
 
 
 
 
 
 
 
 
741514a
7588eb3
 
0aba3a7
741514a
 
 
 
 
 
 
 
 
923fd0e
7588eb3
 
 
741514a
 
 
 
 
 
 
 
d3fc948
 
 
741514a
5dedbfc
741514a
 
5dedbfc
612a3dc
741514a
 
0aba3a7
7588eb3
 
0aba3a7
 
 
 
dbf2edc
 
 
7588eb3
 
0aba3a7
 
 
 
7588eb3
0aba3a7
612a3dc
0aba3a7
741514a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fa8f2f
 
e792b2e
 
612a3dc
e792b2e
923fd0e
7588eb3
 
88cb4f5
7588eb3
 
 
 
 
 
 
 
 
741514a
 
 
 
7588eb3
 
 
5fa8f2f
741514a
 
 
 
 
 
d662447
aa023ea
7588eb3
5fa8f2f
741514a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Credit to Derek Thomas, [email protected]
"""
import os
import logging
from pathlib import Path
from time import perf_counter

import gradio as gr
from jinja2 import Environment, FileSystemLoader

from backend.query_llm import generate_hf, generate_openai, hf_models, openai_models
from backend.semantic_search import retrieve
import itertools
from gradio_client import Client



def run_llama(_, msg, *__):
    client = Client("Be-Bo/llama-3-chatbot_70b")
    yield client.predict(
        message=msg,
        api_name="/chat"
    )

inf_models = list(hf_models.keys()) + list(openai_models)

emb_models = ["bge", "minilm"]
splitters = ['ct', 'rct', 'nltk']
chunk_sizes = ["500", "2000"]
sub_vectors = ["8", "16", "32"]

# Create all combinations of the provided arrays
combinations = itertools.product(emb_models, splitters, chunk_sizes, sub_vectors)

TOP_K = int(os.getenv("TOP_K", 4))

proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')


def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)

def has_balanced_backticks(markdown_str):
    in_code_block = False
    lines = markdown_str.split('\n')
    
    for line in lines:
        stripped_line = line.strip()
        
        # Check if the line contains triple backticks
        if stripped_line.startswith("```"):
            # Toggle the in_code_block flag
            in_code_block = not in_code_block
    
    # If in_code_block is False at the end, all backticks are balanced
    return not in_code_block

def bot(history, model_name, oepnai_api_key,
                  reranker_enabled,reranker_kind,num_prerank_docs,
            num_docs, model_kind, sub_vector_size, chunk_size, splitter_type, all_at_once):
    query = history[-1][0]

    if not query:
        raise gr.Warning("Please submit a non-empty string as a prompt")

    logger.info('Retrieving documents...')
    # Retrieve documents relevant to query
    document_start = perf_counter()

    if reranker_enabled and not all_at_once:
        documents = retrieve(query, int(num_docs), model_kind, sub_vector_size, chunk_size, splitter_type,reranker_kind,num_prerank_docs)
    else:
        documents = retrieve(query, int(num_docs), model_kind, sub_vector_size, chunk_size, splitter_type)

    document_time = perf_counter() - document_start
    logger.info(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')

    # Create Prompt
    prompt = template.render(documents=documents, query=query)
    prompt_html = template_html.render(documents=documents, query=query)

    if model_name == "llama 3":
        generate_fn = run_llama
    elif model_name in hf_models:
         generate_fn = generate_hf
    elif model_name in openai_models:
         generate_fn = generate_openai
    else:
         raise gr.Error(f"Model {model_name} is not supported")
    

    history[-1][1] = ""
    if all_at_once:
        for emb_model, doc, size, sub_vector in combinations:
            documents_i = retrieve(query, int(num_docs), emb_model, sub_vector, size, doc)
            prompt_i = template.render(documents=documents_i, query=query)
            prompt_html = template_html.render(documents=documents, query=query)
            
            hist_chunk = ""
            prev_hist = history[-1][1] 
            if not has_balanced_backticks(prev_hist):
                prev_hist += "\n```\n"
            prev_hist += f"\n\n## model {emb_model}, splitter {doc}, size {size}, sub vector {sub_vector}\n\n"
            for character in generate_fn(model_name, prompt_i, history[:-1], oepnai_api_key):
                hist_chunk = character
                history[-1][1] = prev_hist + hist_chunk
                yield history, prompt_html
    else:
        for character in generate_fn(model_name, prompt, history[:-1], oepnai_api_key):
            history[-1][1] = character
            yield history, prompt_html
    

with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
            [],
            elem_id="chatbot",
            avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                           'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
            bubble_full_width=False,
            show_copy_button=True,
            show_share_button=True,
            )

    with gr.Row():
        txt = gr.Textbox(
                scale=3,
                show_label=False,
                placeholder="Enter text and press enter",
                container=False,
                )
        txt_btn = gr.Button(value="Submit text", scale=1)


    with gr.Row():
        emb_model_kind = gr.Radio(choices=emb_models, value="minilm", label="embedding model")
        sub_vector_size = gr.Radio(choices=sub_vectors, value="16", label="sub-vector size")
        chunk_size = gr.Radio(choices=chunk_sizes, value="2000", label="chunk size")
        splitter_type = gr.Radio(choices=splitters, value="ct", label="splitter")
        all_at_once = gr.Checkbox(value=False, label="Run all at once (no reranker)")
    with gr.Row():
        reranker_enabled = gr.Checkbox(value=False, label="Reranker enabled")
        reranker_kind = gr.Radio(choices=emb_models, value="minilm", label="Reranker model")
        num_prerank_docs = gr.Slider(5, 80, label="Number of docs before reranker", step=1, value=20)
    with gr.Row():
        num_docs = gr.Slider(1, 20, label="number of docs", step=1, value=4)
        model_name = gr.Radio(choices=inf_models, value=inf_models[0], label="Chat model")
        oepnai_api_key = gr.Textbox(
                show_label=False,
                placeholder="OpenAI API key",
                container=False,
                )

    prompt_html = gr.HTML()
    # Turn off interactivity while generating if you click
    txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, model_name, oepnai_api_key,
                  reranker_enabled,reranker_kind,num_prerank_docs,
                num_docs, emb_model_kind, sub_vector_size, chunk_size, splitter_type, all_at_once
            ], [chatbot, prompt_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Turn off interactivity while generating if you hit enter
    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, model_name, oepnai_api_key,
                  reranker_enabled,reranker_kind,num_prerank_docs,
            num_docs, emb_model_kind, sub_vector_size, chunk_size, splitter_type
            ], [chatbot, prompt_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

demo.queue()
demo.launch(debug=True)