""" Credit to Derek Thomas, derek@huggingface.co """ import os import logging from pathlib import Path from time import perf_counter import gradio as gr from jinja2 import Environment, FileSystemLoader from backend.query_llm import generate_hf, generate_openai from backend.semantic_search import retrieve import itertools emb_models = ["bge", "minilm"] splitters = ['ct', 'rct', 'nltk'] chunk_sizes = ["500", "2000"] sub_vectors = ["8", "16", "32"] # Create all combinations of the provided arrays combinations = itertools.product(emb_models, splitters, chunk_sizes, sub_vectors) TOP_K = int(os.getenv("TOP_K", 4)) proj_dir = Path(__file__).parent # Setting up the logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Set up the template environment with the templates directory env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) # Load the templates directly from the environment template = env.get_template('template.j2') template_html = env.get_template('template_html.j2') def add_text(history, text): history = [] if history is None else history history = history + [(text, None)] return history, gr.Textbox(value="", interactive=False) def bot(history, api_kind, num_docs, model_kind, sub_vector_size, chunk_size, splitter_type): query = history[-1][0] if not query: raise gr.Warning("Please submit a non-empty string as a prompt") logger.info('Retrieving documents...') # Retrieve documents relevant to query document_start = perf_counter() documents = retrieve(query, int(num_docs), model_kind, sub_vector_size, chunk_size, splitter_type) document_time = perf_counter() - document_start logger.info(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') # Create Prompt prompt = template.render(documents=documents, query=query) prompt_html = template_html.render(documents=documents, query=query) if api_kind == "HuggingFace": generate_fn = generate_hf elif api_kind == "OpenAI": generate_fn = generate_openai else: raise gr.Error(f"API {api_kind} is not supported") history[-1][1] = "" # for character in generate_fn(prompt, history[:-1]): # history[-1][1] = character # yield history, prompt_html for model_name, doc, size, sub_vector in combinations: documents_i = retrieve(query, int(num_docs), model_name, sub_vector, size, doc) prompt_i = template.render(documents=documents_i, query=query) prompt_html = template_html.render(documents=documents, query=query) hist_chunk = "" prev_hist = history[-1][1] + f"\nmodel {model_name}, splitter {doc}, size {size}, sub vector {sub_vector}\n" for character in generate_fn(prompt_i, history[:-1]): hist_chunk = character history[-1][1] = prev_hist + hist_chunk yield history, prompt_html with gr.Blocks() as demo: chatbot = gr.Chatbot( [], elem_id="chatbot", avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), bubble_full_width=False, show_copy_button=True, show_share_button=True, ) with gr.Row(): txt = gr.Textbox( scale=3, show_label=False, placeholder="Enter text and press enter", container=False, ) txt_btn = gr.Button(value="Submit text", scale=1) with gr.Row(): num_docs = gr.Slider(1, 20, label="number of docs", step=1, value=4) model_kind = gr.Radio(choices=emb_models, value="bge", label="embedding model") sub_vector_size = gr.Radio(choices=sub_vectors, value="32", label="sub-vector size") with gr.Row(): api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace", label="Chat model engine") chunk_size = gr.Radio(choices=chunk_sizes, value="2000", label="chunk size") splitter_type = gr.Radio(choices=splitters, value="nltk", label="splitter") prompt_html = gr.HTML() # Turn off interactivity while generating if you click txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot, api_kind, num_docs, model_kind, sub_vector_size, chunk_size, splitter_type ], [chatbot, prompt_html]) # Turn it back on txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) # Turn off interactivity while generating if you hit enter txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot, api_kind, num_docs, model_kind, sub_vector_size, chunk_size, splitter_type ], [chatbot, prompt_html]) # Turn it back on txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) demo.queue() demo.launch(debug=True)