atatakun commited on
Commit
032edd3
·
1 Parent(s): 771ff1c

Upload 5 files

Browse files
annotator/dwpose/__init__.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Openpose
2
+ # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
3
+ # 2nd Edited by https://github.com/Hzzone/pytorch-openpose
4
+ # 3rd Edited by ControlNet
5
+ # 4th Edited by ControlNet (added face and correct hands)
6
+
7
+ import os
8
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
9
+
10
+ import torch
11
+ import numpy as np
12
+ from . import util
13
+ from .wholebody import Wholebody
14
+
15
+ def draw_pose(pose, H, W):
16
+ bodies = pose['bodies']
17
+ faces = pose['faces']
18
+ hands = pose['hands']
19
+ candidate = bodies['candidate']
20
+ subset = bodies['subset']
21
+ canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
22
+
23
+ canvas = util.draw_bodypose(canvas, candidate, subset)
24
+
25
+ canvas = util.draw_handpose(canvas, hands)
26
+
27
+ canvas = util.draw_facepose(canvas, faces)
28
+
29
+ return canvas
30
+
31
+
32
+ class DWposeDetector:
33
+ def __init__(self):
34
+
35
+ self.pose_estimation = Wholebody()
36
+
37
+ def __call__(self, oriImg):
38
+ oriImg = oriImg.copy()
39
+ H, W, C = oriImg.shape
40
+ with torch.no_grad():
41
+ candidate, subset = self.pose_estimation(oriImg)
42
+ nums, keys, locs = candidate.shape
43
+ candidate[..., 0] /= float(W)
44
+ candidate[..., 1] /= float(H)
45
+ body = candidate[:,:18].copy()
46
+ body = body.reshape(nums*18, locs)
47
+ score = subset[:,:18]
48
+ for i in range(len(score)):
49
+ for j in range(len(score[i])):
50
+ if score[i][j] > 0.3:
51
+ score[i][j] = int(18*i+j)
52
+ else:
53
+ score[i][j] = -1
54
+
55
+ un_visible = subset<0.3
56
+ candidate[un_visible] = -1
57
+
58
+ foot = candidate[:,18:24]
59
+
60
+ faces = candidate[:,24:92]
61
+
62
+ hands = candidate[:,92:113]
63
+ hands = np.vstack([hands, candidate[:,113:]])
64
+
65
+ bodies = dict(candidate=body, subset=score)
66
+ pose = dict(bodies=bodies, hands=hands, faces=faces)
67
+
68
+ return draw_pose(pose, H, W)
annotator/dwpose/onnxdet.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ import onnxruntime
5
+
6
+ def nms(boxes, scores, nms_thr):
7
+ """Single class NMS implemented in Numpy."""
8
+ x1 = boxes[:, 0]
9
+ y1 = boxes[:, 1]
10
+ x2 = boxes[:, 2]
11
+ y2 = boxes[:, 3]
12
+
13
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
14
+ order = scores.argsort()[::-1]
15
+
16
+ keep = []
17
+ while order.size > 0:
18
+ i = order[0]
19
+ keep.append(i)
20
+ xx1 = np.maximum(x1[i], x1[order[1:]])
21
+ yy1 = np.maximum(y1[i], y1[order[1:]])
22
+ xx2 = np.minimum(x2[i], x2[order[1:]])
23
+ yy2 = np.minimum(y2[i], y2[order[1:]])
24
+
25
+ w = np.maximum(0.0, xx2 - xx1 + 1)
26
+ h = np.maximum(0.0, yy2 - yy1 + 1)
27
+ inter = w * h
28
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
29
+
30
+ inds = np.where(ovr <= nms_thr)[0]
31
+ order = order[inds + 1]
32
+
33
+ return keep
34
+
35
+ def multiclass_nms(boxes, scores, nms_thr, score_thr):
36
+ """Multiclass NMS implemented in Numpy. Class-aware version."""
37
+ final_dets = []
38
+ num_classes = scores.shape[1]
39
+ for cls_ind in range(num_classes):
40
+ cls_scores = scores[:, cls_ind]
41
+ valid_score_mask = cls_scores > score_thr
42
+ if valid_score_mask.sum() == 0:
43
+ continue
44
+ else:
45
+ valid_scores = cls_scores[valid_score_mask]
46
+ valid_boxes = boxes[valid_score_mask]
47
+ keep = nms(valid_boxes, valid_scores, nms_thr)
48
+ if len(keep) > 0:
49
+ cls_inds = np.ones((len(keep), 1)) * cls_ind
50
+ dets = np.concatenate(
51
+ [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
52
+ )
53
+ final_dets.append(dets)
54
+ if len(final_dets) == 0:
55
+ return None
56
+ return np.concatenate(final_dets, 0)
57
+
58
+ def demo_postprocess(outputs, img_size, p6=False):
59
+ grids = []
60
+ expanded_strides = []
61
+ strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
62
+
63
+ hsizes = [img_size[0] // stride for stride in strides]
64
+ wsizes = [img_size[1] // stride for stride in strides]
65
+
66
+ for hsize, wsize, stride in zip(hsizes, wsizes, strides):
67
+ xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
68
+ grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
69
+ grids.append(grid)
70
+ shape = grid.shape[:2]
71
+ expanded_strides.append(np.full((*shape, 1), stride))
72
+
73
+ grids = np.concatenate(grids, 1)
74
+ expanded_strides = np.concatenate(expanded_strides, 1)
75
+ outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
76
+ outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
77
+
78
+ return outputs
79
+
80
+ def preprocess(img, input_size, swap=(2, 0, 1)):
81
+ if len(img.shape) == 3:
82
+ padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
83
+ else:
84
+ padded_img = np.ones(input_size, dtype=np.uint8) * 114
85
+
86
+ r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
87
+ resized_img = cv2.resize(
88
+ img,
89
+ (int(img.shape[1] * r), int(img.shape[0] * r)),
90
+ interpolation=cv2.INTER_LINEAR,
91
+ ).astype(np.uint8)
92
+ padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
93
+
94
+ padded_img = padded_img.transpose(swap)
95
+ padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
96
+ return padded_img, r
97
+
98
+ def inference_detector(session, oriImg):
99
+ input_shape = (640,640)
100
+ img, ratio = preprocess(oriImg, input_shape)
101
+
102
+ ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
103
+ output = session.run(None, ort_inputs)
104
+ predictions = demo_postprocess(output[0], input_shape)[0]
105
+
106
+ boxes = predictions[:, :4]
107
+ scores = predictions[:, 4:5] * predictions[:, 5:]
108
+
109
+ boxes_xyxy = np.ones_like(boxes)
110
+ boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
111
+ boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
112
+ boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
113
+ boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
114
+ boxes_xyxy /= ratio
115
+ dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
116
+ if dets is not None:
117
+ final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
118
+ isscore = final_scores>0.3
119
+ iscat = final_cls_inds == 0
120
+ isbbox = [ i and j for (i, j) in zip(isscore, iscat)]
121
+ final_boxes = final_boxes[isbbox]
122
+
123
+ return final_boxes
annotator/dwpose/onnxpose.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Tuple
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import onnxruntime as ort
6
+
7
+ def preprocess(
8
+ img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
9
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
10
+ """Do preprocessing for RTMPose model inference.
11
+
12
+ Args:
13
+ img (np.ndarray): Input image in shape.
14
+ input_size (tuple): Input image size in shape (w, h).
15
+
16
+ Returns:
17
+ tuple:
18
+ - resized_img (np.ndarray): Preprocessed image.
19
+ - center (np.ndarray): Center of image.
20
+ - scale (np.ndarray): Scale of image.
21
+ """
22
+ # get shape of image
23
+ img_shape = img.shape[:2]
24
+ out_img, out_center, out_scale = [], [], []
25
+ if len(out_bbox) == 0:
26
+ out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
27
+ for i in range(len(out_bbox)):
28
+ x0 = out_bbox[i][0]
29
+ y0 = out_bbox[i][1]
30
+ x1 = out_bbox[i][2]
31
+ y1 = out_bbox[i][3]
32
+ bbox = np.array([x0, y0, x1, y1])
33
+
34
+ # get center and scale
35
+ center, scale = bbox_xyxy2cs(bbox, padding=1.25)
36
+
37
+ # do affine transformation
38
+ resized_img, scale = top_down_affine(input_size, scale, center, img)
39
+
40
+ # normalize image
41
+ mean = np.array([123.675, 116.28, 103.53])
42
+ std = np.array([58.395, 57.12, 57.375])
43
+ resized_img = (resized_img - mean) / std
44
+
45
+ out_img.append(resized_img)
46
+ out_center.append(center)
47
+ out_scale.append(scale)
48
+
49
+ return out_img, out_center, out_scale
50
+
51
+
52
+ def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
53
+ """Inference RTMPose model.
54
+
55
+ Args:
56
+ sess (ort.InferenceSession): ONNXRuntime session.
57
+ img (np.ndarray): Input image in shape.
58
+
59
+ Returns:
60
+ outputs (np.ndarray): Output of RTMPose model.
61
+ """
62
+ all_out = []
63
+ # build input
64
+ for i in range(len(img)):
65
+ input = [img[i].transpose(2, 0, 1)]
66
+
67
+ # build output
68
+ sess_input = {sess.get_inputs()[0].name: input}
69
+ sess_output = []
70
+ for out in sess.get_outputs():
71
+ sess_output.append(out.name)
72
+
73
+ # run model
74
+ outputs = sess.run(sess_output, sess_input)
75
+ all_out.append(outputs)
76
+
77
+ return all_out
78
+
79
+
80
+ def postprocess(outputs: List[np.ndarray],
81
+ model_input_size: Tuple[int, int],
82
+ center: Tuple[int, int],
83
+ scale: Tuple[int, int],
84
+ simcc_split_ratio: float = 2.0
85
+ ) -> Tuple[np.ndarray, np.ndarray]:
86
+ """Postprocess for RTMPose model output.
87
+
88
+ Args:
89
+ outputs (np.ndarray): Output of RTMPose model.
90
+ model_input_size (tuple): RTMPose model Input image size.
91
+ center (tuple): Center of bbox in shape (x, y).
92
+ scale (tuple): Scale of bbox in shape (w, h).
93
+ simcc_split_ratio (float): Split ratio of simcc.
94
+
95
+ Returns:
96
+ tuple:
97
+ - keypoints (np.ndarray): Rescaled keypoints.
98
+ - scores (np.ndarray): Model predict scores.
99
+ """
100
+ all_key = []
101
+ all_score = []
102
+ for i in range(len(outputs)):
103
+ # use simcc to decode
104
+ simcc_x, simcc_y = outputs[i]
105
+ keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
106
+
107
+ # rescale keypoints
108
+ keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
109
+ all_key.append(keypoints[0])
110
+ all_score.append(scores[0])
111
+
112
+ return np.array(all_key), np.array(all_score)
113
+
114
+
115
+ def bbox_xyxy2cs(bbox: np.ndarray,
116
+ padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
117
+ """Transform the bbox format from (x,y,w,h) into (center, scale)
118
+
119
+ Args:
120
+ bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
121
+ as (left, top, right, bottom)
122
+ padding (float): BBox padding factor that will be multilied to scale.
123
+ Default: 1.0
124
+
125
+ Returns:
126
+ tuple: A tuple containing center and scale.
127
+ - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
128
+ (n, 2)
129
+ - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
130
+ (n, 2)
131
+ """
132
+ # convert single bbox from (4, ) to (1, 4)
133
+ dim = bbox.ndim
134
+ if dim == 1:
135
+ bbox = bbox[None, :]
136
+
137
+ # get bbox center and scale
138
+ x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
139
+ center = np.hstack([x1 + x2, y1 + y2]) * 0.5
140
+ scale = np.hstack([x2 - x1, y2 - y1]) * padding
141
+
142
+ if dim == 1:
143
+ center = center[0]
144
+ scale = scale[0]
145
+
146
+ return center, scale
147
+
148
+
149
+ def _fix_aspect_ratio(bbox_scale: np.ndarray,
150
+ aspect_ratio: float) -> np.ndarray:
151
+ """Extend the scale to match the given aspect ratio.
152
+
153
+ Args:
154
+ scale (np.ndarray): The image scale (w, h) in shape (2, )
155
+ aspect_ratio (float): The ratio of ``w/h``
156
+
157
+ Returns:
158
+ np.ndarray: The reshaped image scale in (2, )
159
+ """
160
+ w, h = np.hsplit(bbox_scale, [1])
161
+ bbox_scale = np.where(w > h * aspect_ratio,
162
+ np.hstack([w, w / aspect_ratio]),
163
+ np.hstack([h * aspect_ratio, h]))
164
+ return bbox_scale
165
+
166
+
167
+ def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
168
+ """Rotate a point by an angle.
169
+
170
+ Args:
171
+ pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
172
+ angle_rad (float): rotation angle in radian
173
+
174
+ Returns:
175
+ np.ndarray: Rotated point in shape (2, )
176
+ """
177
+ sn, cs = np.sin(angle_rad), np.cos(angle_rad)
178
+ rot_mat = np.array([[cs, -sn], [sn, cs]])
179
+ return rot_mat @ pt
180
+
181
+
182
+ def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
183
+ """To calculate the affine matrix, three pairs of points are required. This
184
+ function is used to get the 3rd point, given 2D points a & b.
185
+
186
+ The 3rd point is defined by rotating vector `a - b` by 90 degrees
187
+ anticlockwise, using b as the rotation center.
188
+
189
+ Args:
190
+ a (np.ndarray): The 1st point (x,y) in shape (2, )
191
+ b (np.ndarray): The 2nd point (x,y) in shape (2, )
192
+
193
+ Returns:
194
+ np.ndarray: The 3rd point.
195
+ """
196
+ direction = a - b
197
+ c = b + np.r_[-direction[1], direction[0]]
198
+ return c
199
+
200
+
201
+ def get_warp_matrix(center: np.ndarray,
202
+ scale: np.ndarray,
203
+ rot: float,
204
+ output_size: Tuple[int, int],
205
+ shift: Tuple[float, float] = (0., 0.),
206
+ inv: bool = False) -> np.ndarray:
207
+ """Calculate the affine transformation matrix that can warp the bbox area
208
+ in the input image to the output size.
209
+
210
+ Args:
211
+ center (np.ndarray[2, ]): Center of the bounding box (x, y).
212
+ scale (np.ndarray[2, ]): Scale of the bounding box
213
+ wrt [width, height].
214
+ rot (float): Rotation angle (degree).
215
+ output_size (np.ndarray[2, ] | list(2,)): Size of the
216
+ destination heatmaps.
217
+ shift (0-100%): Shift translation ratio wrt the width/height.
218
+ Default (0., 0.).
219
+ inv (bool): Option to inverse the affine transform direction.
220
+ (inv=False: src->dst or inv=True: dst->src)
221
+
222
+ Returns:
223
+ np.ndarray: A 2x3 transformation matrix
224
+ """
225
+ shift = np.array(shift)
226
+ src_w = scale[0]
227
+ dst_w = output_size[0]
228
+ dst_h = output_size[1]
229
+
230
+ # compute transformation matrix
231
+ rot_rad = np.deg2rad(rot)
232
+ src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
233
+ dst_dir = np.array([0., dst_w * -0.5])
234
+
235
+ # get four corners of the src rectangle in the original image
236
+ src = np.zeros((3, 2), dtype=np.float32)
237
+ src[0, :] = center + scale * shift
238
+ src[1, :] = center + src_dir + scale * shift
239
+ src[2, :] = _get_3rd_point(src[0, :], src[1, :])
240
+
241
+ # get four corners of the dst rectangle in the input image
242
+ dst = np.zeros((3, 2), dtype=np.float32)
243
+ dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
244
+ dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
245
+ dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
246
+
247
+ if inv:
248
+ warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
249
+ else:
250
+ warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
251
+
252
+ return warp_mat
253
+
254
+
255
+ def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict,
256
+ img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
257
+ """Get the bbox image as the model input by affine transform.
258
+
259
+ Args:
260
+ input_size (dict): The input size of the model.
261
+ bbox_scale (dict): The bbox scale of the img.
262
+ bbox_center (dict): The bbox center of the img.
263
+ img (np.ndarray): The original image.
264
+
265
+ Returns:
266
+ tuple: A tuple containing center and scale.
267
+ - np.ndarray[float32]: img after affine transform.
268
+ - np.ndarray[float32]: bbox scale after affine transform.
269
+ """
270
+ w, h = input_size
271
+ warp_size = (int(w), int(h))
272
+
273
+ # reshape bbox to fixed aspect ratio
274
+ bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
275
+
276
+ # get the affine matrix
277
+ center = bbox_center
278
+ scale = bbox_scale
279
+ rot = 0
280
+ warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
281
+
282
+ # do affine transform
283
+ img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
284
+
285
+ return img, bbox_scale
286
+
287
+
288
+ def get_simcc_maximum(simcc_x: np.ndarray,
289
+ simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
290
+ """Get maximum response location and value from simcc representations.
291
+
292
+ Note:
293
+ instance number: N
294
+ num_keypoints: K
295
+ heatmap height: H
296
+ heatmap width: W
297
+
298
+ Args:
299
+ simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
300
+ simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
301
+
302
+ Returns:
303
+ tuple:
304
+ - locs (np.ndarray): locations of maximum heatmap responses in shape
305
+ (K, 2) or (N, K, 2)
306
+ - vals (np.ndarray): values of maximum heatmap responses in shape
307
+ (K,) or (N, K)
308
+ """
309
+ N, K, Wx = simcc_x.shape
310
+ simcc_x = simcc_x.reshape(N * K, -1)
311
+ simcc_y = simcc_y.reshape(N * K, -1)
312
+
313
+ # get maximum value locations
314
+ x_locs = np.argmax(simcc_x, axis=1)
315
+ y_locs = np.argmax(simcc_y, axis=1)
316
+ locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
317
+ max_val_x = np.amax(simcc_x, axis=1)
318
+ max_val_y = np.amax(simcc_y, axis=1)
319
+
320
+ # get maximum value across x and y axis
321
+ mask = max_val_x > max_val_y
322
+ max_val_x[mask] = max_val_y[mask]
323
+ vals = max_val_x
324
+ locs[vals <= 0.] = -1
325
+
326
+ # reshape
327
+ locs = locs.reshape(N, K, 2)
328
+ vals = vals.reshape(N, K)
329
+
330
+ return locs, vals
331
+
332
+
333
+ def decode(simcc_x: np.ndarray, simcc_y: np.ndarray,
334
+ simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
335
+ """Modulate simcc distribution with Gaussian.
336
+
337
+ Args:
338
+ simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
339
+ simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
340
+ simcc_split_ratio (int): The split ratio of simcc.
341
+
342
+ Returns:
343
+ tuple: A tuple containing center and scale.
344
+ - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
345
+ - np.ndarray[float32]: scores in shape (K,) or (n, K)
346
+ """
347
+ keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
348
+ keypoints /= simcc_split_ratio
349
+
350
+ return keypoints, scores
351
+
352
+
353
+ def inference_pose(session, out_bbox, oriImg):
354
+ h, w = session.get_inputs()[0].shape[2:]
355
+ model_input_size = (w, h)
356
+ resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
357
+ outputs = inference(session, resized_img)
358
+ keypoints, scores = postprocess(outputs, model_input_size, center, scale)
359
+
360
+ return keypoints, scores
annotator/dwpose/util.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import matplotlib
4
+ import cv2
5
+
6
+
7
+ eps = 0.01
8
+
9
+
10
+ def smart_resize(x, s):
11
+ Ht, Wt = s
12
+ if x.ndim == 2:
13
+ Ho, Wo = x.shape
14
+ Co = 1
15
+ else:
16
+ Ho, Wo, Co = x.shape
17
+ if Co == 3 or Co == 1:
18
+ k = float(Ht + Wt) / float(Ho + Wo)
19
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
20
+ else:
21
+ return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
22
+
23
+
24
+ def smart_resize_k(x, fx, fy):
25
+ if x.ndim == 2:
26
+ Ho, Wo = x.shape
27
+ Co = 1
28
+ else:
29
+ Ho, Wo, Co = x.shape
30
+ Ht, Wt = Ho * fy, Wo * fx
31
+ if Co == 3 or Co == 1:
32
+ k = float(Ht + Wt) / float(Ho + Wo)
33
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
34
+ else:
35
+ return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
36
+
37
+
38
+ def padRightDownCorner(img, stride, padValue):
39
+ h = img.shape[0]
40
+ w = img.shape[1]
41
+
42
+ pad = 4 * [None]
43
+ pad[0] = 0 # up
44
+ pad[1] = 0 # left
45
+ pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
46
+ pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
47
+
48
+ img_padded = img
49
+ pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
50
+ img_padded = np.concatenate((pad_up, img_padded), axis=0)
51
+ pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
52
+ img_padded = np.concatenate((pad_left, img_padded), axis=1)
53
+ pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
54
+ img_padded = np.concatenate((img_padded, pad_down), axis=0)
55
+ pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
56
+ img_padded = np.concatenate((img_padded, pad_right), axis=1)
57
+
58
+ return img_padded, pad
59
+
60
+
61
+ def transfer(model, model_weights):
62
+ transfered_model_weights = {}
63
+ for weights_name in model.state_dict().keys():
64
+ transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
65
+ return transfered_model_weights
66
+
67
+
68
+ def draw_bodypose(canvas, candidate, subset):
69
+ H, W, C = canvas.shape
70
+ candidate = np.array(candidate)
71
+ subset = np.array(subset)
72
+
73
+ stickwidth = 4
74
+
75
+ limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
76
+ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
77
+ [1, 16], [16, 18], [3, 17], [6, 18]]
78
+
79
+ colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
80
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
81
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
82
+
83
+ for i in range(17):
84
+ for n in range(len(subset)):
85
+ index = subset[n][np.array(limbSeq[i]) - 1]
86
+ if -1 in index:
87
+ continue
88
+ Y = candidate[index.astype(int), 0] * float(W)
89
+ X = candidate[index.astype(int), 1] * float(H)
90
+ mX = np.mean(X)
91
+ mY = np.mean(Y)
92
+ length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
93
+ angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
94
+ polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
95
+ cv2.fillConvexPoly(canvas, polygon, colors[i])
96
+
97
+ canvas = (canvas * 0.6).astype(np.uint8)
98
+
99
+ for i in range(18):
100
+ for n in range(len(subset)):
101
+ index = int(subset[n][i])
102
+ if index == -1:
103
+ continue
104
+ x, y = candidate[index][0:2]
105
+ x = int(x * W)
106
+ y = int(y * H)
107
+ cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
108
+
109
+ return canvas
110
+
111
+
112
+ def draw_handpose(canvas, all_hand_peaks):
113
+ H, W, C = canvas.shape
114
+
115
+ edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
116
+ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
117
+
118
+ for peaks in all_hand_peaks:
119
+ peaks = np.array(peaks)
120
+
121
+ for ie, e in enumerate(edges):
122
+ x1, y1 = peaks[e[0]]
123
+ x2, y2 = peaks[e[1]]
124
+ x1 = int(x1 * W)
125
+ y1 = int(y1 * H)
126
+ x2 = int(x2 * W)
127
+ y2 = int(y2 * H)
128
+ if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
129
+ cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
130
+
131
+ for i, keyponit in enumerate(peaks):
132
+ x, y = keyponit
133
+ x = int(x * W)
134
+ y = int(y * H)
135
+ if x > eps and y > eps:
136
+ cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
137
+ return canvas
138
+
139
+
140
+ def draw_facepose(canvas, all_lmks):
141
+ H, W, C = canvas.shape
142
+ for lmks in all_lmks:
143
+ lmks = np.array(lmks)
144
+ for lmk in lmks:
145
+ x, y = lmk
146
+ x = int(x * W)
147
+ y = int(y * H)
148
+ if x > eps and y > eps:
149
+ cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
150
+ return canvas
151
+
152
+
153
+ # detect hand according to body pose keypoints
154
+ # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
155
+ def handDetect(candidate, subset, oriImg):
156
+ # right hand: wrist 4, elbow 3, shoulder 2
157
+ # left hand: wrist 7, elbow 6, shoulder 5
158
+ ratioWristElbow = 0.33
159
+ detect_result = []
160
+ image_height, image_width = oriImg.shape[0:2]
161
+ for person in subset.astype(int):
162
+ # if any of three not detected
163
+ has_left = np.sum(person[[5, 6, 7]] == -1) == 0
164
+ has_right = np.sum(person[[2, 3, 4]] == -1) == 0
165
+ if not (has_left or has_right):
166
+ continue
167
+ hands = []
168
+ #left hand
169
+ if has_left:
170
+ left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
171
+ x1, y1 = candidate[left_shoulder_index][:2]
172
+ x2, y2 = candidate[left_elbow_index][:2]
173
+ x3, y3 = candidate[left_wrist_index][:2]
174
+ hands.append([x1, y1, x2, y2, x3, y3, True])
175
+ # right hand
176
+ if has_right:
177
+ right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
178
+ x1, y1 = candidate[right_shoulder_index][:2]
179
+ x2, y2 = candidate[right_elbow_index][:2]
180
+ x3, y3 = candidate[right_wrist_index][:2]
181
+ hands.append([x1, y1, x2, y2, x3, y3, False])
182
+
183
+ for x1, y1, x2, y2, x3, y3, is_left in hands:
184
+ # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
185
+ # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
186
+ # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
187
+ # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
188
+ # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
189
+ # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
190
+ x = x3 + ratioWristElbow * (x3 - x2)
191
+ y = y3 + ratioWristElbow * (y3 - y2)
192
+ distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
193
+ distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
194
+ width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
195
+ # x-y refers to the center --> offset to topLeft point
196
+ # handRectangle.x -= handRectangle.width / 2.f;
197
+ # handRectangle.y -= handRectangle.height / 2.f;
198
+ x -= width / 2
199
+ y -= width / 2 # width = height
200
+ # overflow the image
201
+ if x < 0: x = 0
202
+ if y < 0: y = 0
203
+ width1 = width
204
+ width2 = width
205
+ if x + width > image_width: width1 = image_width - x
206
+ if y + width > image_height: width2 = image_height - y
207
+ width = min(width1, width2)
208
+ # the max hand box value is 20 pixels
209
+ if width >= 20:
210
+ detect_result.append([int(x), int(y), int(width), is_left])
211
+
212
+ '''
213
+ return value: [[x, y, w, True if left hand else False]].
214
+ width=height since the network require squared input.
215
+ x, y is the coordinate of top left
216
+ '''
217
+ return detect_result
218
+
219
+
220
+ # Written by Lvmin
221
+ def faceDetect(candidate, subset, oriImg):
222
+ # left right eye ear 14 15 16 17
223
+ detect_result = []
224
+ image_height, image_width = oriImg.shape[0:2]
225
+ for person in subset.astype(int):
226
+ has_head = person[0] > -1
227
+ if not has_head:
228
+ continue
229
+
230
+ has_left_eye = person[14] > -1
231
+ has_right_eye = person[15] > -1
232
+ has_left_ear = person[16] > -1
233
+ has_right_ear = person[17] > -1
234
+
235
+ if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
236
+ continue
237
+
238
+ head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
239
+
240
+ width = 0.0
241
+ x0, y0 = candidate[head][:2]
242
+
243
+ if has_left_eye:
244
+ x1, y1 = candidate[left_eye][:2]
245
+ d = max(abs(x0 - x1), abs(y0 - y1))
246
+ width = max(width, d * 3.0)
247
+
248
+ if has_right_eye:
249
+ x1, y1 = candidate[right_eye][:2]
250
+ d = max(abs(x0 - x1), abs(y0 - y1))
251
+ width = max(width, d * 3.0)
252
+
253
+ if has_left_ear:
254
+ x1, y1 = candidate[left_ear][:2]
255
+ d = max(abs(x0 - x1), abs(y0 - y1))
256
+ width = max(width, d * 1.5)
257
+
258
+ if has_right_ear:
259
+ x1, y1 = candidate[right_ear][:2]
260
+ d = max(abs(x0 - x1), abs(y0 - y1))
261
+ width = max(width, d * 1.5)
262
+
263
+ x, y = x0, y0
264
+
265
+ x -= width
266
+ y -= width
267
+
268
+ if x < 0:
269
+ x = 0
270
+
271
+ if y < 0:
272
+ y = 0
273
+
274
+ width1 = width * 2
275
+ width2 = width * 2
276
+
277
+ if x + width > image_width:
278
+ width1 = image_width - x
279
+
280
+ if y + width > image_height:
281
+ width2 = image_height - y
282
+
283
+ width = min(width1, width2)
284
+
285
+ if width >= 20:
286
+ detect_result.append([int(x), int(y), int(width)])
287
+
288
+ return detect_result
289
+
290
+
291
+ # get max index of 2d array
292
+ def npmax(array):
293
+ arrayindex = array.argmax(1)
294
+ arrayvalue = array.max(1)
295
+ i = arrayvalue.argmax()
296
+ j = arrayindex[i]
297
+ return i, j
annotator/dwpose/wholebody.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ import onnxruntime as ort
5
+ from .onnxdet import inference_detector
6
+ from .onnxpose import inference_pose
7
+
8
+ class Wholebody:
9
+ def __init__(self):
10
+ device = 'cuda:0'
11
+ providers = ['CPUExecutionProvider'
12
+ ] if device == 'cpu' else ['CUDAExecutionProvider']
13
+ onnx_det = 'annotator/ckpts/yolox_l.onnx'
14
+ onnx_pose = 'annotator/ckpts/dw-ll_ucoco_384.onnx'
15
+
16
+ self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
17
+ self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
18
+
19
+ def __call__(self, oriImg):
20
+ det_result = inference_detector(self.session_det, oriImg)
21
+ keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
22
+
23
+ keypoints_info = np.concatenate(
24
+ (keypoints, scores[..., None]), axis=-1)
25
+ # compute neck joint
26
+ neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
27
+ # neck score when visualizing pred
28
+ neck[:, 2:4] = np.logical_and(
29
+ keypoints_info[:, 5, 2:4] > 0.3,
30
+ keypoints_info[:, 6, 2:4] > 0.3).astype(int)
31
+ new_keypoints_info = np.insert(
32
+ keypoints_info, 17, neck, axis=1)
33
+ mmpose_idx = [
34
+ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
35
+ ]
36
+ openpose_idx = [
37
+ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
38
+ ]
39
+ new_keypoints_info[:, openpose_idx] = \
40
+ new_keypoints_info[:, mmpose_idx]
41
+ keypoints_info = new_keypoints_info
42
+
43
+ keypoints, scores = keypoints_info[
44
+ ..., :2], keypoints_info[..., 2]
45
+
46
+ return keypoints, scores
47
+
48
+