File size: 8,643 Bytes
e05f54a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import json
from pathlib import Path
from huggingface_hub import hf_hub_download, HfApi
from coremltools import ComputeUnit
from transformers.onnx.utils import get_preprocessor
from exporters.coreml import export
from exporters.coreml.features import FeaturesManager
from exporters.coreml.validate import validate_model_outputs
compute_units_mapping = {
"All": ComputeUnit.ALL,
"CPU": ComputeUnit.CPU_ONLY,
"CPU + GPU": ComputeUnit.CPU_AND_GPU,
"CPU + NE": ComputeUnit.CPU_AND_NE,
}
compute_units_labels = list(compute_units_mapping.keys())
framework_mapping = {
"PyTorch": "pt",
"TensorFlow": "tf",
}
framework_labels = list(framework_mapping.keys())
precision_mapping = {
"Float32": "float32",
"Float16 quantization": "float16",
}
precision_labels = list(precision_mapping.keys())
tolerance_mapping = {
"Model default": None,
"1e-2": 1e-2,
"1e-3": 1e-3,
"1e-4": 1e-4,
}
tolerance_labels = list(tolerance_mapping.keys())
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def url_to_model_id(model_id_str):
if not model_id_str.startswith("https://huggingface.co/"): return model_id_str
return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1]
def supported_frameworks(model_id):
"""
Return a list of supported frameworks (`PyTorch` or `TensorFlow`) for a given model_id.
Only PyTorch and Tensorflow are supported.
"""
api = HfApi()
model_info = api.model_info(model_id)
tags = model_info.tags
frameworks = [tag for tag in tags if tag in ["pytorch", "tf"]]
return sorted(["PyTorch" if f == "pytorch" else "TensorFlow" for f in frameworks])
def on_model_change(model):
model = url_to_model_id(model)
tasks = None
error = None
try:
config_file = hf_hub_download(model, filename="config.json")
if config_file is None:
raise Exception(f"Model {model} not found")
with open(config_file, "r") as f:
config_json = f.read()
config = json.loads(config_json)
model_type = config["model_type"]
features = FeaturesManager.get_supported_features_for_model_type(model_type)
tasks = list(features.keys())
frameworks = supported_frameworks(model)
selected_framework = frameworks[0] if len(frameworks) > 0 else None
return (
gr.update(visible=bool(model_type)), # Settings column
gr.update(choices=tasks, value=tasks[0] if tasks else None), # Tasks
gr.update(visible=len(frameworks)>1, choices=frameworks, value=selected_framework), # Frameworks
gr.update(value=error_str(error)), # Error
)
except Exception as e:
error = e
model_type = None
def convert_model(preprocessor, model, model_coreml_config, compute_units, precision, tolerance, output, use_past=False, seq2seq=None):
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
mlmodel = export(
preprocessor,
model,
coreml_config,
quantize=precision,
compute_units=compute_units,
)
filename = output
if seq2seq == "encoder":
filename = filename.parent / ("encoder_" + filename.name)
elif seq2seq == "decoder":
filename = filename.parent / ("decoder_" + filename.name)
filename = filename.as_posix()
mlmodel.save(filename)
if tolerance is None:
tolerance = coreml_config.atol_for_validation
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
def convert(model, task, compute_units, precision, tolerance, framework):
model = url_to_model_id(model)
compute_units = compute_units_mapping[compute_units]
precision = precision_mapping[precision]
tolerance = tolerance_mapping[tolerance]
framework = framework_mapping[framework]
# TODO: support legacy format
output = Path("exported")/model/"coreml"/task
output.mkdir(parents=True, exist_ok=True)
output = output/f"{precision}_model.mlpackage"
try:
preprocessor = get_preprocessor(model)
model = FeaturesManager.get_model_from_feature(task, model, framework=framework)
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
if task in ["seq2seq-lm", "speech-seq2seq"]:
# Convert encoder / decoder
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
seq2seq="encoder"
)
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
seq2seq="decoder"
)
else:
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
)
# TODO: push to hub, whatever
return "Done"
except Exception as e:
return error_str(e)
DESCRIPTION = """
## Convert a transformers model to Core ML
With this Space you can try to convert a transformers model to Core ML. It uses the 🤗 Hugging Face [Exporters repo](https://huggingface.co/exporters) under the hood.
Note that not all models are supported. If you get an error on a model you'd like to convert, please open an issue on the [repo](https://github.com/huggingface/exporters).
After conversion, you can choose to submit a PR to the original repo, or create your own repo with just the converted Core ML weights.
"""
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## 1. Load model info")
input_model = gr.Textbox(
max_lines=1,
label="Model name or URL, such as apple/mobilevit-small",
placeholder="distilbert-base-uncased",
value="distilbert-base-uncased",
)
btn_get_tasks = gr.Button("Load")
with gr.Column(scale=3):
with gr.Column(visible=False) as group_settings:
gr.Markdown("## 2. Select Task")
radio_tasks = gr.Radio(label="Choose the task for the converted model.")
gr.Markdown("The `default` task is suitable for feature extraction.")
radio_framework = gr.Radio(
visible=False,
label="Framework",
choices=framework_labels,
value=framework_labels[0],
)
radio_compute = gr.Radio(
label="Compute Units",
choices=compute_units_labels,
value=compute_units_labels[0],
)
radio_precision = gr.Radio(
label="Precision",
choices=precision_labels,
value=precision_labels[0],
)
radio_tolerance = gr.Radio(
label="Absolute Tolerance for Validation",
choices=tolerance_labels,
value=tolerance_labels[0],
)
btn_convert = gr.Button("Convert")
gr.Markdown("Conversion will take a few minutes.")
error_output = gr.Markdown(label="Output")
btn_get_tasks.click(
fn=on_model_change,
inputs=input_model,
outputs=[group_settings, radio_tasks, radio_framework, error_output],
queue=False,
scroll_to_output=True
)
btn_convert.click(
fn=convert,
inputs=[input_model, radio_tasks, radio_compute, radio_precision, radio_tolerance, radio_framework],
outputs=error_output,
scroll_to_output=True
)
# gr.HTML("""
# <div style="border-top: 1px solid #303030;">
# <br>
# <p>Footer</p><br>
# <p><img src="https://visitor-badge.glitch.me/badge?page_id=pcuenq.transformers-to-coreml" alt="visitors"></p>
# </div>
# """)
demo.queue(concurrency_count=1, max_size=10)
demo.launch(debug=True, share=False)
|