File size: 20,641 Bytes
d178e6e
 
 
 
 
 
 
 
 
 
0da9ad7
 
d178e6e
0da9ad7
d178e6e
0da9ad7
 
d178e6e
 
 
0da9ad7
 
 
d178e6e
0da9ad7
 
d178e6e
0da9ad7
d178e6e
 
 
b0aee22
 
 
0da9ad7
 
 
 
 
d178e6e
0da9ad7
 
 
d178e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da9ad7
d178e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390bdc0
d178e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdbaaec
 
 
 
 
 
 
d178e6e
 
 
 
 
0da9ad7
 
d178e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc8935
d178e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da9ad7
d178e6e
 
 
 
 
0da9ad7
d178e6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da9ad7
d178e6e
0da9ad7
d178e6e
 
 
 
 
 
 
 
0da9ad7
 
d178e6e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
from typing import List
from pydantic import BaseModel
from fastapi import FastAPI, Response, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware  # 跨域
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import sklearn.preprocessing as preproc
from sklearn.preprocessing import StandardScaler
import lightgbm as lgb
from xgboost import XGBRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import io
import json
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('AGG')


app = FastAPI()

# set cross-domain whitelist
origins = [
    "http://127.0.0.1:5500",
    "http://localhost:8081",
    "http://mlca.coycs.com",
    "https://mlca.coycs.com",
    "http://celadon-lebkuchen-cc4bb0.netlify.app",
    "https://celadon-lebkuchen-cc4bb0.netlify.app"
]
app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["POST", "GET"],
    allow_headers=["*"],
)

# 工具函数


def json2df(json):
    # 字符串转数值
    def str2num(x):
        if isinstance(x, str):
            return eval(x)
        else:
            return x
    df = pd.DataFrame(json)
    # 空白符转None,且是"None"让eval能解析成功
    df.replace(to_replace=r"^\s*$", value="None", regex=True, inplace=True)
    # 科学计数法转数值
    df = df.applymap(str2num)
    return df


# def process_abnormal(df, detect, method):  # 异常值处理
#     if detect == 1:  # IQR检测方式
#         for coloum in df.columns:
#             q1 = df[coloum].quantile(0.75)
#             q3 = df[coloum].quantile(0.25)
#             iqr = q1-q3
#             if method == 1:  # 删除异常值
#                 df.drop(
#                     df.loc[lambda x:x[coloum] > q1 + 1.5 * iqr].index, inplace=True)
#                 df.drop(
#                     df.loc[lambda x:x[coloum] < q3 - 1.5 * iqr].index, inplace=True)
#             elif method == 2:  # 均值替换
#                 df.loc[lambda x:x[coloum] > q1 + 1.5 *
#                        iqr, coloum]=df[coloum].mean()
#                 df.loc[lambda x:x[coloum] < q3 - 1.5 *
#                        iqr, coloum]=df[coloum].mean()
#             elif method == 3:  # 中位数替换
#                 df.loc[lambda x:x[coloum] > q1 + 1.5 *
#                        iqr, coloum]=df[coloum].median()
#                 df.loc[lambda x:x[coloum] < q3 - 1.5 *
#                        iqr, coloum]=df[coloum].median()
#             elif method == 4:  # 众数替换
#                 df.loc[lambda x:x[coloum] > q1 + 1.5 *
#                        iqr, coloum]=df[coloum].mode().iloc[0]
#                 df.loc[lambda x:x[coloum] < q3 - 1.5 *
#                        iqr, coloum]=df[coloum].mode().iloc[0]
#             elif method == 5:  # 边界替换
#                 df.loc[lambda x:x[coloum] > q1 +
#                        1.5 * iqr, coloum]=q1 + 1.5 * iqr
#                 df.loc[lambda x:x[coloum] < q3 -
#                        1.5 * iqr, coloum]=q3 - 1.5 * iqr
#     elif detect == 2:  # Z-score检测方式
#         for coloum in df.columns:
#             mean = df[coloum].mean()
#             std = df[coloum].std()
#             df.drop(
#                 df.loc[lambda x:x[coloum] > mean + 3 * std].index, inplace=True)
#             df.drop(
#                 df.loc[lambda x:x[coloum] < mean - 3 * std].index, inplace=True)
#             if method == 1:  # 删除异常值
#                 df.drop(
#                     df.loc[lambda x:x[coloum] > mean + 3 * std].index, inplace=True)
#                 df.drop(
#                     df.loc[lambda x:x[coloum] < mean - 3 * std].index, inplace=True)
#             elif method == 2:  # 均值替换
#                 df.loc[lambda x:x[coloum] > mean +
#                        3 * std, coloum]=df[coloum].mean()
#                 df.loc[lambda x:x[coloum] < mean -
#                        3 * std, coloum]=df[coloum].mean()
#             elif method == 3:  # 中位数替换
#                 df.loc[lambda x:x[coloum] > mean + 3 *
#                        std, coloum]=df[coloum].median()
#                 df.loc[lambda x:x[coloum] < mean - 3 *
#                        std, coloum]=df[coloum].median()
#             elif method == 4:  # 众数替换
#                 df.loc[lambda x:x[coloum] > mean + 3 *
#                        std, coloum]=df[coloum].mode().iloc[0]
#                 df.loc[lambda x:x[coloum] < mean - 3 *
#                        std, coloum]=df[coloum].mode().iloc[0]
#             elif method == 5:  # 边界替换
#                 df.loc[lambda x:x[coloum] > mean +
#                        3 * std, coloum]=mean + 3 * std
#                 df.loc[lambda x:x[coloum] < mean -
#                        3 * std, coloum]=mean - 3 * std
#     return df


def process_miss(df, method):  # 缺失值处理
    # 舍弃全为空的行
    df = df.dropna(how='all')
    # 舍弃全为空的列
    df = df.dropna(axis=1, how='all')
    if method == 1:  # 均值
        df = df.fillna(df.mean())
    elif method == 2:  # 中位数
        df = df.fillna(df.median())
    elif method == 3:  # 众数
        df = df.fillna(df.mode().iloc[0])
    elif method == 4:  # 线性
        df = df.fillna(df.interpolate(
            method='linear', limit_direction='forward', axis=0))
    elif method == 5:  # 前值
        df = df.fillna(method="ffill")
    elif method == 6:  # 后值
        df = df.fillna(method="bfill")
    return df


def process_abnormal(df_inside, df_user, detect, method):  # 异常值处理
    df = pd.concat([df_inside, df_user], axis=0,
                   ignore_index=True)  # 合并的dataframe
    df_features = df.iloc[:, :12]  # 取所有的特征列为dataframe
    # print(df)

    if detect == 1:  # IQR检测方式
        for coloum in df_features.columns:
            q1 = df_features[coloum].quantile(0.75)
            q3 = df_features[coloum].quantile(0.25)
            iqr = q1-q3
            if method == 1:  # 删除异常值
                df_features.drop(
                    df_features.loc[lambda x:x[coloum] > q1 + 1.5 * iqr].index, inplace=True)
                df_features.drop(
                    df_features.loc[lambda x:x[coloum] < q3 - 1.5 * iqr].index, inplace=True)
            elif method == 2:  # 均值替换
                df_features.loc[lambda x:x[coloum] > q1 + 1.5 *
                                iqr, coloum]=df_features[coloum].mean()
                df_features.loc[lambda x:x[coloum] < q3 - 1.5 *
                                iqr, coloum]=df_features[coloum].mean()
            elif method == 3:  # 中位数替换
                df_features.loc[lambda x:x[coloum] > q1 + 1.5 *
                                iqr, coloum]=df_features[coloum].median()
                df_features.loc[lambda x:x[coloum] < q3 - 1.5 *
                                iqr, coloum]=df_features[coloum].median()
            elif method == 4:  # 众数替换
                df_features.loc[lambda x:x[coloum] > q1 + 1.5 *
                                iqr, coloum]=df_features[coloum].mode().iloc[0]
                df_features.loc[lambda x:x[coloum] < q3 - 1.5 *
                                iqr, coloum]=df_features[coloum].mode().iloc[0]
            elif method == 5:  # 边界替换
                df_features.loc[lambda x:x[coloum] > q1 +
                                1.5 * iqr, coloum]=q1 + 1.5 * iqr
                df_features.loc[lambda x:x[coloum] < q3 -
                                1.5 * iqr, coloum]=q3 - 1.5 * iqr
    elif detect == 2:  # Z-score检测方式
        for coloum in df_features.columns:
            mean = df_features[coloum].mean()
            std = df_features[coloum].std()
            df_features.drop(
                df_features.loc[lambda x:x[coloum] > mean + 3 * std].index, inplace=True)
            df_features.drop(
                df_features.loc[lambda x:x[coloum] < mean - 3 * std].index, inplace=True)
            if method == 1:  # 删除异常值
                df_features.drop(
                    df_features.loc[lambda x:x[coloum] > mean + 3 * std].index, inplace=True)
                df_features.drop(
                    df_features.loc[lambda x:x[coloum] < mean - 3 * std].index, inplace=True)
            elif method == 2:  # 均值替换
                df_features.loc[lambda x:x[coloum] > mean +
                                3 * std, coloum]=df_features[coloum].mean()
                df_features.loc[lambda x:x[coloum] < mean -
                                3 * std, coloum]=df_features[coloum].mean()
            elif method == 3:  # 中位数替换
                df_features.loc[lambda x:x[coloum] > mean + 3 *
                                std, coloum]=df_features[coloum].median()
                df_features.loc[lambda x:x[coloum] < mean - 3 *
                                std, coloum]=df_features[coloum].median()
            elif method == 4:  # 众数替换
                df_features.loc[lambda x:x[coloum] > mean + 3 *
                                std, coloum]=df_features[coloum].mode().iloc[0]
                df_features.loc[lambda x:x[coloum] < mean - 3 *
                                std, coloum]=df_features[coloum].mode().iloc[0]
            elif method == 5:  # 边界替换
                df_features.loc[lambda x:x[coloum] > mean +
                                3 * std, coloum]=mean + 3 * std
                df_features.loc[lambda x:x[coloum] < mean -
                                3 * std, coloum]=mean - 3 * std

    df.iloc[:, :12] = df_features
    df_inside = df.iloc[:df_inside.shape[0], :]
    df_user = df.iloc[df_inside.shape[0]:, :12]
    return {"df_inside": df_inside, "df_user": df_user}


def process_standard(df_inside, df_user, method):  # 标准化处理
    df = pd.concat([df_inside, df_user], axis=0,
                   ignore_index=True)  # 合并的dataframe
    df_features = df.iloc[:, :12]  # 取所有的特征列为dataframe
    columns = df_features.columns  # 列名

    if method == 1:  # Min-max
        df_features = preproc.minmax_scale(df_features)
    elif method == 2:  # Z-Score
        df_features = preproc.StandardScaler().fit_transform(df_features)
    elif method == 3:  # MaxAbs
        df_features = preproc.maxabs_scale(df_features, axis=0)
    elif method == 4:  # RobustScaler
        df_features = preproc.RobustScaler().fit_transform(df_features)
    elif method == 5:  # 正则化
        df_features = preproc.normalize(df_features, axis=0)
    df_features = pd.DataFrame(
        data=df_features[0:, 0:], columns=columns)  # 补充列名

    df.iloc[:, :12] = df_features
    df_inside = df.iloc[:df_inside.shape[0], :]
    df_user = df.iloc[df_inside.shape[0]:, :12]
    return {"df_inside": df_inside, "df_user": df_user}


def train_model(x, y, test_size, algorithm, paras):  # 模型训练
   # 划分数据集
    x_train, x_test, y_train, y_test = train_test_split(
        x, y, test_size=test_size, random_state=0)
    # 机器学习
    model = None
    results = {}
    if algorithm == 1:  # 最小二乘法线性回归
        model = LinearRegression(fit_intercept=paras["fit_intercept"])
    if algorithm == 2:  # 随机森林回归
        model = RandomForestRegressor(n_estimators=paras["n_estimators"],
                                      criterion=paras["criterion"], max_depth=paras["max_depth"], random_state=0)
    if algorithm == 3:  # BP神经网络回归
        model = MLPRegressor(hidden_layer_sizes=(paras["hidden_layer_sizes_1"], paras["hidden_layer_sizes_2"]),
                             activation=paras["activation"], solver='lbfgs', random_state=paras["random_state"])
    if algorithm == 4:  # XGBoost回归
        model = XGBRegressor(
            max_depth=paras["max_depth"], learning_rate=paras["learning_rate"], n_estimators=paras["n_estimators"])
    if algorithm == 5:  # LightGBM回归
        # model = lgb.LGBMRegressor(objective='regression',boosting_type="dart",num_leaves=30, max_depth=-1,n_estimators=20,learning_rate=1)
        model = lgb.LGBMRegressor(objective='regression', max_depth=paras["max_depth"],
                                  learning_rate=paras["learning_rate"], random_state=paras["random_state"], n_estimators=paras["n_estimators"])

    # 返回数据
    if model != None:
        model.fit(x_train, y_train)
        if algorithm == 1:  # 最小二乘法线性回归
            # 保留小数点后三位
            # results["coef"] = model.coef_.tolist()  # 模型斜率
            results["coef"] = [float('{:.4f}'.format(i))
                               for i in model.coef_.tolist()]  # 模型斜率
            results["intercept"] = round(model.intercept_, 3)  # 模型截距
        y_pred = model.predict(x_test)  # 预测值
        # y_test = y_test.values
        # 误差,用round保留三位小数且四舍五入
        mae = round(mean_absolute_error(y_test, y_pred), 3)
        rmse = round(np.sqrt(mean_squared_error(y_test, y_pred)), 3)
        r2 = round(r2_score(y_test, y_pred), 3)
        # y_test = [x[0] for x in np.array(y_test).tolist()]
        # y_pred = [x[0] for x in y_pred.tolist()]
        y_test = np.array(y_test).tolist()
        y_pred = y_pred.tolist()

        res = {"y_test": y_test, "y_pred": y_pred, "error": {
            "MAE": mae, "RMSE": rmse, "R2": r2}, "results": results}
        print(res)
        
        return res
        # return {"y_test": y_test, "y_pred": y_pred, "error": {"MAE": mae, "RMSE": rmse, "R2": r2}, "results": results}
    else:
        return "模型训练出错"


def predict_connectivity(x, x1, y, test_size, algorithm, paras):
    # 划分数据集
    x_train, x_test, y_train, y_test = train_test_split(
        x, y, test_size=test_size, random_state=0)
    # 机器学习
    model = None
    results = {}
    if algorithm == 1:  # 最小二乘法线性回归
        model = LinearRegression(fit_intercept=paras["fit_intercept"])
    if algorithm == 2:  # 随机森林回归
        model = RandomForestRegressor(n_estimators=paras["n_estimators"],
                                      criterion=paras["criterion"], max_depth=paras["max_depth"], random_state=0)
    if algorithm == 3:  # BP神经网络回归
        model = MLPRegressor(hidden_layer_sizes=(paras["hidden_layer_sizes_1"], paras["hidden_layer_sizes_2"]),
                             activation=paras["activation"], solver='lbfgs', random_state=paras["random_state"])
    if algorithm == 4:  # XGBoost回归
        model = XGBRegressor(
            max_depth=paras["max_depth"], learning_rate=paras["learning_rate"], n_estimators=paras["n_estimators"])
    if algorithm == 5:  # LightGBM回归
        model = lgb.LGBMRegressor(objective='regression', max_depth=paras["max_depth"],
                                  learning_rate=paras["learning_rate"], random_state=paras["random_state"], n_estimators=paras["n_estimators"])
    # 返回数据
    if model != None:
        model.fit(x_train, y_train)
        y_pred = model.predict(x1).tolist()  # 预测值
        return y_pred
    else:
        return "预测连通性出错"

# 登录验证


class Login(BaseModel):  # 接口数据类型
    username: str
    password: str


@app.post("/login")  # 接口
async def login(login: Login):
    username = login.username
    password = login.password
    if username == "admin" and password == "123456":
        return True
    return False


# 处理用户数据

class Process_user(BaseModel):  # 接口数据类型
    mode: int
    data: List
    miss: List
    abnormal: List
    standard: List


@app.post("/process/user")  # 接口
async def process_user(user: Process_user):
    mode = user.mode  # 选择的井间连通模式
    df_inside = pd.read_csv(
        "./mode_{}.csv".format(mode)).dropna(axis=0)  # 连通模式对应的内置数据
    df_user = json2df(user.data)
    abnormal = user.abnormal[0]
    miss = user.miss[0]
    standard = user.standard[0]
    # 异常值处理
    if abnormal["state"]:
        abnormaled = process_abnormal(
            df_inside, df_user, abnormal["detect"], abnormal["method"])
        df_inside = abnormaled["df_inside"]
        df_user = abnormaled["df_user"]
    # 缺失值处理
    if miss["state"]:
        df_user = process_miss(df_user, miss["method"])
    # 标准化处理
    if standard["state"]:
        standarded = process_standard(df_inside, df_user, standard["method"])
        df_inside = standarded["df_inside"]
        df_user = standarded["df_user"]
    # 用astype将数值转科学计数法
    return {"inside": df_inside.astype('str').to_json(orient='records'), "user": df_user.astype('str').to_json(orient='records')}

    # # 用astype将数值转科学计数法
    # return df.astype('str').to_json(orient='records')

# 处理内置数据


class Process_inside(BaseModel):  # 接口数据类型
    data: List
    abnormal: List
    standard: List


@app.post("/process/inside")  # 接口
async def process_inside(inside: Process_inside):
    df = json2df(inside.data)
    abnormal = inside.abnormal[0]
    standard = inside.standard[0]
    # 异常值处理
    if abnormal["state"]:
        df = process_abnormal(df, abnormal["detect"], abnormal["method"])
    # 标准化处理:只对特征进行标准化,不包括标签(后三列)
    if standard["state"]:
        df = pd.concat([process_standard(df.iloc[:, :12],
                        standard["method"]), df.iloc[:, 12:]], axis=1)
    # 用astype将数值转科学计数法
    return df.astype('str').to_json(orient='records')


# 训练模型
class Train(BaseModel):  # 接口数据类型
    data: List
    test_size: float
    algorithm: int
    paras: List


@app.post("/train")  # 接口
async def train(train: Train):
    # 解析数据
    df = json2df(train.data)
    test_size = train.test_size
    algorithm = train.algorithm
    paras = train.paras[0]
    x = df.iloc[:, :12]
    y1 = df.loc[:, "BSR"]
    y2 = df.loc[:, "SBR"]
    y3 = df.loc[:, "D"]
    bsr = train_model(x, y1, test_size, algorithm, paras)
    sbr = train_model(x, y2, test_size, algorithm, paras)
    x_train, x_test, y_train, y_test = train_test_split(
        x, y3, test_size=test_size, random_state=0)
    d = {"y_test": np.array(y_test).tolist(), "y_pred": np.sum(
        [bsr["y_pred"], sbr["y_pred"]], axis=0).tolist()}
    return {"bsr": bsr, "sbr": sbr,  "d": d}

# 预测连通性


class Predict(BaseModel):  # 接口数据类型
    data_train: List
    data_predict: List
    test_size: float
    algorithm: int
    paras: List


@app.post("/predict")  # 接口
async def predict(predict: Predict):
    # 解析数据
    df_train = json2df(predict.data_train)
    df_predict = json2df(predict.data_predict)
    test_size = predict.test_size
    algorithm = predict.algorithm
    paras = predict.paras[0]
    x = df_train.iloc[:, :12]
    y1 = df_train.loc[:, "BSR"]
    y2 = df_train.loc[:, "SBR"]
    # 预测连通性
    bsr = predict_connectivity(x, df_predict, y1, test_size, algorithm, paras)
    sbr = predict_connectivity(x, df_predict, y2, test_size, algorithm, paras)
    d = np.sum([bsr, sbr], axis=0).tolist()
    # 合并为一个list后转dataframe再转json实现前端表格数据格式
    data = []
    data.append(bsr)
    data.append(sbr)
    data.append(d)
    df_result = pd.concat([pd.DataFrame(predict.data_predict), pd.DataFrame(data=np.array(
        data).T.tolist(), columns=["BSR", "SBR",  "D"])], axis=1)
    return df_result.to_json(orient='records')
    # return pd.DataFrame(data=np.array(data).T.tolist(), columns=["BSR", "SBR",  "D"]).to_json(orient='records')


# # 图片测试

# def create_img():
#     plt.rcParams['figure.figsize'] = [7.50, 3.50]
#     plt.rcParams['figure.autolayout'] = True
#     plt.plot([1, 2])
#     img_buf = io.BytesIO()
#     plt.savefig(img_buf, format='png')
#     plt.close()
#     return img_buf


# @app.get('/png')
# async def get_img(background_tasks: BackgroundTasks):
#     img_buf = create_img()
#     # get the entire buffer content
#     # because of the async, this will await the loading of all content
#     bufContents: bytes = img_buf.getvalue()
#     background_tasks.add_task(img_buf.close)
#     headers = {'Content-Disposition': 'inline; filename="out.png"'}
#     return Response(bufContents, headers=headers, media_type='image/png')