|
from tinyllava.eval.run_tiny_llava import eval_model |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from tinyllava_visualizer.tinyllava_visualizer import * |
|
|
|
prompt = "What are the things I should be cautious about when I visit here?" |
|
image_file = "https://llava-vl.github.io/static/images/view.jpg" |
|
|
|
model = AutoModelForCausalLM.from_pretrained("/mnt/hwfile/opendatalab/wensiwei/checkpoint/TinyLLaVA-Phi-2-SigLIP-3.1B", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("/mnt/hwfile/opendatalab/wensiwei/checkpoint/TinyLLaVA-Phi-2-SigLIP-3.1B", trust_remote_code=True) |
|
model.tokenizer = tokenizer |
|
|
|
args = type('Args', (), { |
|
"model_path": None, |
|
"model": model, |
|
"query": prompt, |
|
"conv_mode": "phi", |
|
"image_file": image_file, |
|
"sep": ",", |
|
"temperature": 0, |
|
"top_p": None, |
|
"num_beams": 1, |
|
"max_new_tokens": 512 |
|
})() |
|
|
|
monitor = Monitor(args, model, llm_layers_index=31) |
|
eval_model(args) |
|
monitor.get_output(output_dir='results/') |
|
|