import os from PIL import Image, ImageFile import torch import ast from ..utils.data_utils import * ImageFile.LOAD_TRUNCATED_IMAGES = True # 可能imagepreprocess需要继承一个huggingface的图像处理类?提供from_pretrained方法 class ImagePreprocess: def __init__(self, image_processor, data_args={}): self.image_aspect_ratio = getattr(data_args, 'image_aspect_ratio', None) self.image_processor = image_processor self.image_grid_pinpoints = getattr(data_args, 'image_grid_pinpoints', None) def __call__(self, image): if self.image_aspect_ratio == 'pad': image = self.expand2square(image, tuple(int(x * 255) for x in self.image_processor.image_mean)) elif self.image_aspect_ratio == "anyres": image = self.process_anyres_image(image, self.image_processor, self.image_grid_pinpoints) return image image = self.image_processor(image, return_tensors='pt')['pixel_values'][0] return image @classmethod def expand2square(cls, pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result @classmethod def process_anyres_image(cls, image, processor, grid_pinpoints): """ Process an image with variable resolutions. Args: image (PIL.Image.Image): The input image to be processed. processor: The image processor object. grid_pinpoints (str): A string representation of a list of possible resolutions. Returns: torch.Tensor: A tensor containing the processed image patches. """ if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) best_resolution = select_best_resolution(image.size, possible_resolutions) image_padded = resize_and_pad_image(image, best_resolution) patches = divide_to_patches(image_padded, processor.crop_size['height']) image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) image_patches = [image_original_resize] + patches image_patches = [processor(image_patch, return_tensors='pt')['pixel_values'][0] for image_patch in image_patches] return torch.stack(image_patches, dim=0)