Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,587 Bytes
abd8161 8a25734 abd8161 b0a3539 abd8161 9a9f462 8a25734 9a9f462 b41662d 9a9f462 b9f9055 9a9f462 b41662d b9f9055 9a9f462 b41662d b9f9055 b41662d b9f9055 b41662d b9f9055 b41662d b9f9055 b41662d b9f9055 b41662d b9f9055 9a9f462 b41662d b9f9055 b41662d 0334211 b41662d b7adca8 b41662d b0a3539 b41662d 498f1f8 b41662d 83a50fd dbd61ff 83a50fd b41662d 498f1f8 f3eb6b9 83a50fd 75b28df b41662d f3eb6b9 dbd61ff f3eb6b9 dbd61ff f3eb6b9 dbd61ff f3eb6b9 dbd61ff 46bf568 f3eb6b9 498f1f8 dbd61ff f3eb6b9 dbd61ff f3eb6b9 8a25734 b9f9055 abd8161 b0a3539 abd8161 b9f9055 abd8161 b9f9055 abd8161 b9f9055 f3eb6b9 dbd61ff f3eb6b9 abd8161 f3eb6b9 dbd61ff abd8161 b9f9055 abd8161 0334211 abd8161 f3eb6b9 dbd61ff abd8161 b9f9055 abd8161 9a9f462 9b222ac b41662d 9b222ac f3eb6b9 dbd61ff 9b222ac f3eb6b9 b0a3539 b41662d f3eb6b9 dbd61ff f3eb6b9 dbd61ff b41662d dbd61ff b41662d b9f9055 abd8161 fcdcd8d abd8161 fcdcd8d de62063 fcdcd8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
import trimesh
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
print(f'Creating user directory: {user_dir}')
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
print(f'Removing user directory: {user_dir}')
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
"""
Preprocess the input image.
"""
processed_image = pipeline.preprocess_image(image)
return processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
# First stage: Generate sparse structure
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
# Clear CUDA cache after structure generation
torch.cuda.empty_cache()
# Second stage: Generate video preview in batches
video_frames = []
video_geo_frames = []
batch_size = 30 # Process 30 frames at a time
num_frames = 120
for i in range(0, num_frames, batch_size):
end_idx = min(i + batch_size, num_frames)
batch_frames = render_utils.render_video(
outputs['gaussian'][0],
num_frames=end_idx - i,
start_frame=i
)['color']
video_frames.extend(batch_frames)
batch_geo = render_utils.render_video(
outputs['mesh'][0],
num_frames=end_idx - i,
start_frame=i
)['normal']
video_geo_frames.extend(batch_geo)
# Clear cache after each batch
torch.cuda.empty_cache()
# Combine frames and save video
video = [np.concatenate([video_frames[i], video_geo_frames[i]], axis=1)
for i in range(len(video_frames))]
trial_id = str(uuid.uuid4())
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
imageio.mimsave(video_path, video, fps=15)
# Clear video data
del video_frames
del video_geo_frames
del video
torch.cuda.empty_cache()
# Pack state
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
return state, video_path
@spaces.GPU
def extract_high_quality_mesh(
state: dict,
req: gr.Request,
) -> Tuple[str, str]:
"""
Save raw mesh data directly with correct orientation.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
# Get the raw mesh data from state
vertices = state['mesh']['vertices']
faces = state['mesh']['faces']
trial_id = state['trial_id']
# Rotate vertices from z-up to y-up
rotation_matrix = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
rotated_vertices = vertices @ rotation_matrix
# Create mesh and save
simple_mesh = trimesh.Trimesh(vertices=rotated_vertices, faces=faces)
glb_path = os.path.join(user_dir, f"{trial_id}_raw.glb")
simple_mesh.export(glb_path)
return glb_path, glb_path
@spaces.GPU
def extract_textured_high_quality_mesh(
state: dict,
req: gr.Request,
) -> Tuple[str, str]:
"""
Save raw high-quality mesh with textures but no mesh simplification.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh, trial_id = unpack_state(state)
# Clear cache before starting
torch.cuda.empty_cache()
# Use to_glb with texturing but no simplification
glb = postprocessing_utils.to_glb(
gs,
mesh,
simplify=0.0, # Keep full quality
texture_size=2048, # Maximum texture resolution
fill_holes=False,
fill_holes_max_size=0.04,
verbose=True
)
glb_path = os.path.join(user_dir, f"{trial_id}_full_textured.glb")
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_reduced_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a reduced-quality GLB file with texturing.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh, trial_id = unpack_state(state)
# Clear cache before GLB generation
torch.cuda.empty_cache()
glb = postprocessing_utils.to_glb(
gs,
mesh,
simplify=mesh_simplify,
texture_size=texture_size,
verbose=True
)
glb_path = os.path.join(user_dir, f"{trial_id}_reduced.glb")
glb.export(glb_path)
# Final cleanup
torch.cuda.empty_cache()
return glb_path, glb_path
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Upload an image and click "Generate" to create a 3D asset
* After generation, choose from three export options:
* Raw Mesh: Maximum detail, untextured
* Full Textured: Maximum detail with textures
* Reduced GLB: Reduced size with textures
""")
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
extract_raw_btn = gr.Button("Extract Raw Mesh", interactive=False)
extract_textured_btn = gr.Button("Extract Full Textured", interactive=False)
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.0, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_reduced_btn = gr.Button("Extract Reduced GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="3D Model Preview", exposure=20.0, height=300)
gr.Markdown("### Download Options")
with gr.Row():
download_raw = gr.DownloadButton(label="Download Raw Mesh", interactive=False)
download_textured = gr.DownloadButton(label="Download Full Textured", interactive=False)
download_reduced = gr.DownloadButton(label="Download Reduced GLB", interactive=False)
output_buf = gr.State()
# Example images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt],
run_on_click=True,
examples_per_page=64,
)
# Event handlers
demo.load(start_session)
demo.unload(end_session)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
lambda: [gr.Button(interactive=True), gr.Button(interactive=True), gr.Button(interactive=True),
gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)],
outputs=[extract_raw_btn, extract_textured_btn, extract_reduced_btn,
download_raw, download_textured, download_reduced],
)
extract_raw_btn.click(
extract_high_quality_mesh,
inputs=[output_buf],
outputs=[model_output, download_raw],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_raw],
)
extract_textured_btn.click(
extract_textured_high_quality_mesh,
inputs=[output_buf],
outputs=[model_output, download_textured],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_textured],
)
extract_reduced_btn.click(
extract_reduced_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_reduced],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_reduced],
)
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch() |