File size: 12,587 Bytes
abd8161
8a25734
 
 
abd8161
 
 
 
 
 
 
 
b0a3539
abd8161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9f462
8a25734
9a9f462
 
 
 
 
 
 
 
b41662d
9a9f462
b9f9055
9a9f462
 
b41662d
b9f9055
9a9f462
 
 
 
 
 
 
 
 
 
 
 
 
 
b41662d
b9f9055
 
 
 
 
 
b41662d
 
 
 
 
 
b9f9055
 
b41662d
 
b9f9055
b41662d
 
b9f9055
 
b41662d
 
b9f9055
b41662d
 
 
b9f9055
 
 
 
9a9f462
 
 
b41662d
b9f9055
 
 
b41662d
 
 
0334211
b41662d
 
b7adca8
b41662d
b0a3539
b41662d
 
 
 
498f1f8
b41662d
 
 
83a50fd
dbd61ff
83a50fd
 
b41662d
498f1f8
 
 
 
 
 
f3eb6b9
83a50fd
75b28df
b41662d
f3eb6b9
 
dbd61ff
f3eb6b9
 
 
 
dbd61ff
f3eb6b9
 
 
 
dbd61ff
 
 
 
 
f3eb6b9
 
dbd61ff
 
46bf568
f3eb6b9
 
 
498f1f8
dbd61ff
 
f3eb6b9
dbd61ff
f3eb6b9
 
8a25734
b9f9055
abd8161
 
 
 
 
 
b0a3539
abd8161
 
 
b9f9055
 
 
 
 
 
 
 
 
 
 
 
abd8161
b9f9055
 
 
abd8161
 
 
 
 
b9f9055
f3eb6b9
dbd61ff
 
f3eb6b9
abd8161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3eb6b9
dbd61ff
abd8161
 
 
 
 
b9f9055
abd8161
 
 
 
0334211
abd8161
f3eb6b9
dbd61ff
abd8161
 
 
 
b9f9055
abd8161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9f462
 
 
 
 
 
9b222ac
 
b41662d
9b222ac
f3eb6b9
 
dbd61ff
 
9b222ac
 
f3eb6b9
b0a3539
b41662d
f3eb6b9
 
 
 
 
 
dbd61ff
 
f3eb6b9
dbd61ff
b41662d
 
dbd61ff
b41662d
 
b9f9055
 
abd8161
 
 
 
 
 
 
 
 
fcdcd8d
abd8161
fcdcd8d
de62063
 
fcdcd8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
import trimesh
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)


def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    print(f'Creating user directory: {user_dir}')
    os.makedirs(user_dir, exist_ok=True)
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    print(f'Removing user directory: {user_dir}')
    shutil.rmtree(user_dir)

def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
    """
    Preprocess the input image.
    """
    processed_image = pipeline.preprocess_image(image)
    return processed_image

def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']

def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed

@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convert an image to a 3D model.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    
    # First stage: Generate sparse structure
    outputs = pipeline.run(
        image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    
    # Clear CUDA cache after structure generation
    torch.cuda.empty_cache()

    # Second stage: Generate video preview in batches
    video_frames = []
    video_geo_frames = []
    batch_size = 30  # Process 30 frames at a time
    num_frames = 120
    
    for i in range(0, num_frames, batch_size):
        end_idx = min(i + batch_size, num_frames)
        batch_frames = render_utils.render_video(
            outputs['gaussian'][0], 
            num_frames=end_idx - i,
            start_frame=i
        )['color']
        video_frames.extend(batch_frames)
        
        batch_geo = render_utils.render_video(
            outputs['mesh'][0], 
            num_frames=end_idx - i,
            start_frame=i
        )['normal']
        video_geo_frames.extend(batch_geo)
        
        # Clear cache after each batch
        torch.cuda.empty_cache()
    
    # Combine frames and save video
    video = [np.concatenate([video_frames[i], video_geo_frames[i]], axis=1) 
            for i in range(len(video_frames))]
    trial_id = str(uuid.uuid4())
    video_path = os.path.join(user_dir, f"{trial_id}.mp4")
    imageio.mimsave(video_path, video, fps=15)
    
    # Clear video data
    del video_frames
    del video_geo_frames
    del video
    torch.cuda.empty_cache()
    
    # Pack state
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
    return state, video_path

@spaces.GPU
def extract_high_quality_mesh(
    state: dict,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Save raw mesh data directly with correct orientation.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    
    # Get the raw mesh data from state
    vertices = state['mesh']['vertices']
    faces = state['mesh']['faces']
    trial_id = state['trial_id']
    
    # Rotate vertices from z-up to y-up
    rotation_matrix = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
    rotated_vertices = vertices @ rotation_matrix
    
    # Create mesh and save
    simple_mesh = trimesh.Trimesh(vertices=rotated_vertices, faces=faces)
    glb_path = os.path.join(user_dir, f"{trial_id}_raw.glb")
    simple_mesh.export(glb_path)
    
    return glb_path, glb_path

@spaces.GPU
def extract_textured_high_quality_mesh(
    state: dict,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Save raw high-quality mesh with textures but no mesh simplification.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh, trial_id = unpack_state(state)
    
    # Clear cache before starting
    torch.cuda.empty_cache()
    
    # Use to_glb with texturing but no simplification
    glb = postprocessing_utils.to_glb(
        gs,
        mesh,
        simplify=0.0,  # Keep full quality
        texture_size=2048,  # Maximum texture resolution
        fill_holes=False,
        fill_holes_max_size=0.04,
        verbose=True
    )
    
    glb_path = os.path.join(user_dir, f"{trial_id}_full_textured.glb")
    glb.export(glb_path)
    
    torch.cuda.empty_cache()
    return glb_path, glb_path

@spaces.GPU
def extract_reduced_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a reduced-quality GLB file with texturing.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh, trial_id = unpack_state(state)
    
    # Clear cache before GLB generation
    torch.cuda.empty_cache()
    
    glb = postprocessing_utils.to_glb(
        gs,
        mesh,
        simplify=mesh_simplify,
        texture_size=texture_size,
        verbose=True
    )
    glb_path = os.path.join(user_dir, f"{trial_id}_reduced.glb")
    glb.export(glb_path)
    
    # Final cleanup
    torch.cuda.empty_cache()
    return glb_path, glb_path

with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Upload an image and click "Generate" to create a 3D asset
    * After generation, choose from three export options:
        * Raw Mesh: Maximum detail, untextured
        * Full Textured: Maximum detail with textures
        * Reduced GLB: Reduced size with textures
    """)
    
    with gr.Row():
        with gr.Column():
            image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)

            generate_btn = gr.Button("Generate")
            extract_raw_btn = gr.Button("Extract Raw Mesh", interactive=False)
            extract_textured_btn = gr.Button("Extract Full Textured", interactive=False)
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.0, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_reduced_btn = gr.Button("Extract Reduced GLB", interactive=False)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="3D Model Preview", exposure=20.0, height=300)
            gr.Markdown("### Download Options")
            with gr.Row():
                download_raw = gr.DownloadButton(label="Download Raw Mesh", interactive=False)
                download_textured = gr.DownloadButton(label="Download Full Textured", interactive=False)
                download_reduced = gr.DownloadButton(label="Download Reduced GLB", interactive=False)
            
    output_buf = gr.State()

    # Example images
    with gr.Row():
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[image_prompt],
            run_on_click=True,
            examples_per_page=64,
        )

    # Event handlers
    demo.load(start_session)
    demo.unload(end_session)
    
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        lambda: [gr.Button(interactive=True), gr.Button(interactive=True), gr.Button(interactive=True),
                 gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)],
        outputs=[extract_raw_btn, extract_textured_btn, extract_reduced_btn,
                 download_raw, download_textured, download_reduced],
    )

    extract_raw_btn.click(
        extract_high_quality_mesh,
        inputs=[output_buf],
        outputs=[model_output, download_raw],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_raw],
    )

    extract_textured_btn.click(
        extract_textured_high_quality_mesh,
        inputs=[output_buf],
        outputs=[model_output, download_textured],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_textured],
    )

    extract_reduced_btn.click(
        extract_reduced_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_reduced],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_reduced],
    )

if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
    except:
        pass
    demo.launch()