File size: 9,046 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
from tqdm import tqdm
import argparse
import cv2
import numpy as np
from torchvision import transforms
from datasets import Dataset, concatenate_datasets
from pytorch_grad_cam import GradCAM
from timm.models import create_model, load_checkpoint
from timm.data import create_transform
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
if not os.path.isdir('results/grad_cam/correct'):
os.mkdir('results/grad_cam/correct')
if not os.path.isdir('results/grad_cam/incorrect'):
os.mkdir('results/grad_cam/incorrect')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='tpmlp_s', type=str, metavar='MODEL',
help='path to latest checkpoint (default: none)')
parser.add_argument('--checkpoint', default='/home/daa5724/tpmlp-s-300-ema/last.pth.tar', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--idx', default='[1374, 27826, 14327, 1828, 31787, 21083, 38902, 7912, 10089, 16915, 20986, 35716, 15233, 20648, 30566, 20150, 45538, 42359, 39683, 20329, 20868, 48557, 10569, 37167, 11163, 6688, 21910, 44528, 10660, 13919, 10098, 46981, 36560, 14231, 45372, 6262, 23684, 16895, 17036, 15670, 35393, 26758, 18572, 48064, 29773, 25437, 5494, 12825, 25737, 45244, 16877, 29958, 38519, 5338, 46210, 15154, 15040, 15783, 13640, 14420, 26836, 38155, 45094, 33282, 13362, 42975, 38779, 24298, 20632, 48373, 28662, 21869, 37940, 25953, 29360, 9428, 22352, 6498, 2014, 9666, 30364, 21129, 43259, 16148, 31559, 4508, 42773, 8180, 17194, 46614, 23580, 3039, 36980, 35809, 860, 35940, 9670, 33552, 35731, 23777, 15272, 47792, 20589, 12044, 24154, 24852, 2090, 16158, 12333, 4109, 7612, 22611, 12808, 38787, 41688, 23714, 17498, 29326, 12237, 28137, 38521, 24060, 31545, 46094, 34674, 18182, 28380, 34046]', type=str, metavar='IDX',
help='list of indices to use (default: [...]')
parser.add_argument('--use-cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument('--aug_smooth', action='store_true',
help='Apply test time augmentation to smooth the CAM')
parser.add_argument(
'--eigen_smooth',
action='store_true',
help='Reduce noise by taking the first principle componenet'
'of cam_weights*activations')
args = parser.parse_args()
args.use_cuda = True
if args.use_cuda:
print('Using GPU for acceleration')
else:
print('Using CPU for computation')
return args
if __name__ == '__main__':
args = get_args()
model = create_model(
args.model,
num_classes=1000,
in_chans=3,
)
load_checkpoint(model, args.checkpoint, True)
# Choose the target layer you want to compute the visualization for.
# Usually this will be the last convolutional layer in the model.
# Some common choices can be:
# Resnet18 and 50: model.layer4
# VGG, densenet161: model.features[-1]
# mnasnet1_0: model.layers[-1]
# You can print the model to help chose the layer
# You can pass a list with several target layers,
# in that case the CAMs will be computed per layer and then aggregated.
# You can also try selecting all layers of a certain type, with e.g:
# from pytorch_grad_cam.utils.find_layers import find_layer_types_recursive
# find_layer_types_recursive(model, [torch.nn.ReLU])
target_layers = [model.layers[3]]
dataset = concatenate_datasets([Dataset.from_file(f"../../imagenet-1k/imagenet-1k-validation-{i:05d}-of-00013.arrow",) for i in range(13)])
# loader = create_loader(
# dataset,
# input_size=(3, 224, 224),
# batch_size=1,
# use_prefetcher=False,
# interpolation='bicubic',
# mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225],
# num_workers=4,
# crop_pct=.9,
# crop_mode='center',
# pin_memory=False,
# device="cuda",
# tf_preprocessing=False
# )
augs = create_transform(
input_size=(3, 224, 224),
is_training=False,
use_prefetcher=False,
crop_pct=0.9,
)
resize = transforms.Compose(augs.transforms[:-1])
normalize = augs.transforms[-1]
def transform(img):
img = resize(img.convert("RGB"))
tensor = normalize(img)
return img, tensor[None]
# assert rgb_img.min() > -1e-5 and rgb_img.max() < 1 + 1e-5
# rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1]
# rgb_img = np.float32(rgb_img) / 255
# input_tensor = preprocess_image(rgb_img,
# mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
idx = eval(args.idx)
correct_idx = idx[:len(idx) // 2]
incorrect_idx = idx[len(idx) // 2:]
for idx in tqdm(correct_idx):
data = dataset[int(idx)]
image, label = data['image'], data['label']
rgb_img, input_tensor = transform(image)
rgb_img = rgb_img.permute(1, 2, 0)
input_tensor = input_tensor.cuda()
targets = [ClassifierOutputTarget(label)]
with GradCAM(model=model,
target_layers=target_layers,
use_cuda=True) as cam:
grayscale_cam, pred = cam(input_tensor=input_tensor,
targets=targets,
aug_smooth=args.aug_smooth,
eigen_smooth=args.eigen_smooth)
if pred[0] != label:
print(f"`pred != gdth` in correct_idx: {pred[0]} != {label}. Skipping idx {idx}.")
# Here grayscale_cam has only one image in the batch
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img.detach().cpu().numpy(), grayscale_cam, use_rgb=True, image_weight=0.5, colormap=cv2.COLORMAP_TWILIGHT_SHIFTED)
# cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding.
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
rbg_image = cv2.cvtColor((rgb_img * 255).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
cv2.imwrite(f'results/grad_cam/correct/grad_cam_{idx}.png', cam_image)
cv2.imwrite(f'results/grad_cam/correct/image_{idx}[{label}].png', rbg_image)
for idx in tqdm(incorrect_idx):
data = dataset[int(idx)]
image, label = data['image'], data['label']
rgb_img, input_tensor = transform(image)
rgb_img = rgb_img.permute(1, 2, 0)
input_tensor = input_tensor.cuda()
targets = [ClassifierOutputTarget(label)]
with GradCAM(model=model,
target_layers=target_layers,
use_cuda=True) as cam:
grayscale_cam, pred = cam(input_tensor=input_tensor,
targets=targets,
aug_smooth=args.aug_smooth,
eigen_smooth=args.eigen_smooth)
if pred[0] == label:
print(f"`pred == gdth` in incorrect_idx: {pred[0]} == {label}. Skipping idx {idx}.")
# Here grayscale_cam has only one image in the batch
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img.detach().cpu().numpy(), grayscale_cam, use_rgb=True, image_weight=0.5, colormap=cv2.COLORMAP_TWILIGHT_SHIFTED)
# cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding.
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
rbg_image = cv2.cvtColor((rgb_img * 255).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
cv2.imwrite(f'results/grad_cam/incorrect/grad_cam_gdth_{idx}.png', cam_image)
cv2.imwrite(f'results/grad_cam/incorrect/image_{idx}[{label}].png', rbg_image)
with GradCAM(model=model,
target_layers=target_layers,
use_cuda=True) as cam:
grayscale_cam, pred = cam(input_tensor=input_tensor,
targets=None,
aug_smooth=args.aug_smooth,
eigen_smooth=args.eigen_smooth)
# Here grayscale_cam has only one image in the batch
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img.detach().cpu().numpy(), grayscale_cam, use_rgb=True, image_weight=0.5, colormap=cv2.COLORMAP_TWILIGHT_SHIFTED)
# cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding.
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(f'results/grad_cam/incorrect/grad_cam_pred_{idx}[{pred[0]}].png', cam_image)
|