File size: 10,522 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# DenseNet

**DenseNet** is a type of convolutional neural network that utilises dense connections between layers, through [Dense Blocks](http://www.paperswithcode.com/method/dense-block), where we connect *all layers* (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.

The **DenseNet Blur** variant in this collection by Ross Wightman employs [Blur Pooling](http://www.paperswithcode.com/method/blur-pooling)

## How do I use this model on an image?
To load a pretrained model:

```python
import timm
model = timm.create_model('densenet121', pretrained=True)
model.eval()
```

To load and preprocess the image:
```python 
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:
```python
import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```

To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `densenet121`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.

## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('densenet121', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/HuangLW16a,
  author    = {Gao Huang and
               Zhuang Liu and
               Kilian Q. Weinberger},
  title     = {Densely Connected Convolutional Networks},
  journal   = {CoRR},
  volume    = {abs/1608.06993},
  year      = {2016},
  url       = {http://arxiv.org/abs/1608.06993},
  archivePrefix = {arXiv},
  eprint    = {1608.06993},
  timestamp = {Mon, 10 Sep 2018 15:49:32 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HuangLW16a.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

```
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```

<!--
Type: model-index
Collections:
- Name: DenseNet
  Paper:
    Title: Densely Connected Convolutional Networks
    URL: https://paperswithcode.com/paper/densely-connected-convolutional-networks
Models:
- Name: densenet121
  In Collection: DenseNet
  Metadata:
    FLOPs: 3641843200
    Parameters: 7980000
    File Size: 32376726
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Block
    - Dense Connections
    - Dropout
    - Max Pooling
    - ReLU
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Kaiming Initialization
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    ID: densenet121
    LR: 0.1
    Epochs: 90
    Layers: 121
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L295
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenet121_ra-50efcf5c.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.56%
      Top 5 Accuracy: 92.65%
- Name: densenet161
  In Collection: DenseNet
  Metadata:
    FLOPs: 9931959264
    Parameters: 28680000
    File Size: 115730790
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Block
    - Dense Connections
    - Dropout
    - Max Pooling
    - ReLU
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Kaiming Initialization
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    ID: densenet161
    LR: 0.1
    Epochs: 90
    Layers: 161
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L347
  Weights: https://download.pytorch.org/models/densenet161-8d451a50.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.36%
      Top 5 Accuracy: 93.63%
- Name: densenet169
  In Collection: DenseNet
  Metadata:
    FLOPs: 4316945792
    Parameters: 14150000
    File Size: 57365526
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Block
    - Dense Connections
    - Dropout
    - Max Pooling
    - ReLU
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Kaiming Initialization
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    ID: densenet169
    LR: 0.1
    Epochs: 90
    Layers: 169
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L327
  Weights: https://download.pytorch.org/models/densenet169-b2777c0a.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.9%
      Top 5 Accuracy: 93.02%
- Name: densenet201
  In Collection: DenseNet
  Metadata:
    FLOPs: 5514321024
    Parameters: 20010000
    File Size: 81131730
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Block
    - Dense Connections
    - Dropout
    - Max Pooling
    - ReLU
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Kaiming Initialization
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    ID: densenet201
    LR: 0.1
    Epochs: 90
    Layers: 201
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L337
  Weights: https://download.pytorch.org/models/densenet201-c1103571.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.29%
      Top 5 Accuracy: 93.48%
- Name: densenetblur121d
  In Collection: DenseNet
  Metadata:
    FLOPs: 3947812864
    Parameters: 8000000
    File Size: 32456500
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Blur Pooling
    - Convolution
    - Dense Block
    - Dense Connections
    - Dropout
    - Max Pooling
    - ReLU
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: densenetblur121d
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L305
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenetblur121d_ra-100dcfbc.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 76.59%
      Top 5 Accuracy: 93.2%
- Name: tv_densenet121
  In Collection: DenseNet
  Metadata:
    FLOPs: 3641843200
    Parameters: 7980000
    File Size: 32342954
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Block
    - Dense Connections
    - Dropout
    - Max Pooling
    - ReLU
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tv_densenet121
    LR: 0.1
    Epochs: 90
    Crop Pct: '0.875'
    LR Gamma: 0.1
    Momentum: 0.9
    Batch Size: 32
    Image Size: '224'
    LR Step Size: 30
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L379
  Weights: https://download.pytorch.org/models/densenet121-a639ec97.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 74.74%
      Top 5 Accuracy: 92.15%
-->