File size: 5,239 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# ESE-VoVNet

**VoVNet** is a convolutional neural network that seeks to make [DenseNet](https://paperswithcode.com/method/densenet) more efficient by concatenating all features only once in the last feature map, which makes input size constant and enables enlarging new output channel. 

Read about [one-shot aggregation here](https://paperswithcode.com/method/one-shot-aggregation).

## How do I use this model on an image?
To load a pretrained model:

```python
import timm
model = timm.create_model('ese_vovnet19b_dw', pretrained=True)
model.eval()
```

To load and preprocess the image:
```python 
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:
```python
import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```

To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `ese_vovnet19b_dw`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.

## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('ese_vovnet19b_dw', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.

## Citation

```BibTeX
@misc{lee2019energy,
      title={An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, 
      author={Youngwan Lee and Joong-won Hwang and Sangrok Lee and Yuseok Bae and Jongyoul Park},
      year={2019},
      eprint={1904.09730},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: ESE VovNet
  Paper:
    Title: 'CenterMask : Real-Time Anchor-Free Instance Segmentation'
    URL: https://paperswithcode.com/paper/centermask-real-time-anchor-free-instance-1
Models:
- Name: ese_vovnet19b_dw
  In Collection: ESE VovNet
  Metadata:
    FLOPs: 1711959904
    Parameters: 6540000
    File Size: 26243175
    Architecture:
    - Batch Normalization
    - Convolution
    - Max Pooling
    - One-Shot Aggregation
    - ReLU
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: ese_vovnet19b_dw
    Layers: 19
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L361
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet19b_dw-a8741004.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 76.82%
      Top 5 Accuracy: 93.28%
- Name: ese_vovnet39b
  In Collection: ESE VovNet
  Metadata:
    FLOPs: 9089259008
    Parameters: 24570000
    File Size: 98397138
    Architecture:
    - Batch Normalization
    - Convolution
    - Max Pooling
    - One-Shot Aggregation
    - ReLU
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: ese_vovnet39b
    Layers: 39
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L371
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet39b-f912fe73.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.31%
      Top 5 Accuracy: 94.72%
-->