File size: 8,396 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Instagram ResNeXt WSL

A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension,  *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. 

This model was trained on billions of Instagram images using thousands of distinct hashtags as labels exhibit excellent transfer learning performance. 

Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only.

## How do I use this model on an image?
To load a pretrained model:

```python
import timm
model = timm.create_model('ig_resnext101_32x16d', pretrained=True)
model.eval()
```

To load and preprocess the image:
```python 
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:
```python
import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```

To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `ig_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.

## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('ig_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.

## Citation

```BibTeX
@misc{mahajan2018exploring,
      title={Exploring the Limits of Weakly Supervised Pretraining}, 
      author={Dhruv Mahajan and Ross Girshick and Vignesh Ramanathan and Kaiming He and Manohar Paluri and Yixuan Li and Ashwin Bharambe and Laurens van der Maaten},
      year={2018},
      eprint={1805.00932},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: IG ResNeXt
  Paper:
    Title: Exploring the Limits of Weakly Supervised Pretraining
    URL: https://paperswithcode.com/paper/exploring-the-limits-of-weakly-supervised
Models:
- Name: ig_resnext101_32x16d
  In Collection: IG ResNeXt
  Metadata:
    FLOPs: 46623691776
    Parameters: 194030000
    File Size: 777518664
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - IG-3.5B-17k
    - ImageNet
    Training Resources: 336x GPUs
    ID: ig_resnext101_32x16d
    Epochs: 100
    Layers: 101
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8064
    Image Size: '224'
    Weight Decay: 0.001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L874
  Weights: https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 84.16%
      Top 5 Accuracy: 97.19%
- Name: ig_resnext101_32x32d
  In Collection: IG ResNeXt
  Metadata:
    FLOPs: 112225170432
    Parameters: 468530000
    File Size: 1876573776
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - IG-3.5B-17k
    - ImageNet
    Training Resources: 336x GPUs
    ID: ig_resnext101_32x32d
    Epochs: 100
    Layers: 101
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8064
    Image Size: '224'
    Weight Decay: 0.001
    Interpolation: bilinear
    Minibatch Size: 8064
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L885
  Weights: https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 85.09%
      Top 5 Accuracy: 97.44%
- Name: ig_resnext101_32x48d
  In Collection: IG ResNeXt
  Metadata:
    FLOPs: 197446554624
    Parameters: 828410000
    File Size: 3317136976
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - IG-3.5B-17k
    - ImageNet
    Training Resources: 336x GPUs
    ID: ig_resnext101_32x48d
    Epochs: 100
    Layers: 101
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8064
    Image Size: '224'
    Weight Decay: 0.001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L896
  Weights: https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 85.42%
      Top 5 Accuracy: 97.58%
- Name: ig_resnext101_32x8d
  In Collection: IG ResNeXt
  Metadata:
    FLOPs: 21180417024
    Parameters: 88790000
    File Size: 356056638
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - IG-3.5B-17k
    - ImageNet
    Training Resources: 336x GPUs
    ID: ig_resnext101_32x8d
    Epochs: 100
    Layers: 101
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8064
    Image Size: '224'
    Weight Decay: 0.001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L863
  Weights: https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 82.7%
      Top 5 Accuracy: 96.64%
-->