File size: 7,027 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# (Legacy) SE-ResNeXt

**SE ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration.

## How do I use this model on an image?
To load a pretrained model:

```python
import timm
model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True)
model.eval()
```

To load and preprocess the image:
```python 
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:
```python
import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```

To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `legacy_seresnext101_32x4d`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.

## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.

## Citation

```BibTeX
@misc{hu2019squeezeandexcitation,
      title={Squeeze-and-Excitation Networks}, 
      author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu},
      year={2019},
      eprint={1709.01507},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: Legacy SE ResNeXt
  Paper:
    Title: Squeeze-and-Excitation Networks
    URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks
Models:
- Name: legacy_seresnext101_32x4d
  In Collection: Legacy SE ResNeXt
  Metadata:
    FLOPs: 10287698672
    Parameters: 48960000
    File Size: 196466866
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA Titan X GPUs
    ID: legacy_seresnext101_32x4d
    LR: 0.6
    Epochs: 100
    Layers: 101
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 1024
    Image Size: '224'
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L462
  Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 80.23%
      Top 5 Accuracy: 95.02%
- Name: legacy_seresnext26_32x4d
  In Collection: Legacy SE ResNeXt
  Metadata:
    FLOPs: 3187342304
    Parameters: 16790000
    File Size: 67346327
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA Titan X GPUs
    ID: legacy_seresnext26_32x4d
    LR: 0.6
    Epochs: 100
    Layers: 26
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 1024
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L448
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.11%
      Top 5 Accuracy: 93.31%
- Name: legacy_seresnext50_32x4d
  In Collection: Legacy SE ResNeXt
  Metadata:
    FLOPs: 5459954352
    Parameters: 27560000
    File Size: 110559176
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Global Average Pooling
    - Grouped Convolution
    - Max Pooling
    - ReLU
    - ResNeXt Block
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA Titan X GPUs
    ID: legacy_seresnext50_32x4d
    LR: 0.6
    Epochs: 100
    Layers: 50
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 1024
    Image Size: '224'
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L455
  Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.08%
      Top 5 Accuracy: 94.43%
-->