File size: 12,623 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# ResNet

**Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. 

## How do I use this model on an image?
To load a pretrained model:

```python
import timm
model = timm.create_model('resnet18', pretrained=True)
model.eval()
```

To load and preprocess the image:
```python 
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:
```python
import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```

To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `resnet18`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.

## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/HeZRS15,
  author    = {Kaiming He and
               Xiangyu Zhang and
               Shaoqing Ren and
               Jian Sun},
  title     = {Deep Residual Learning for Image Recognition},
  journal   = {CoRR},
  volume    = {abs/1512.03385},
  year      = {2015},
  url       = {http://arxiv.org/abs/1512.03385},
  archivePrefix = {arXiv},
  eprint    = {1512.03385},
  timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

<!--
Type: model-index
Collections:
- Name: ResNet
  Paper:
    Title: Deep Residual Learning for Image Recognition
    URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
Models:
- Name: resnet18
  In Collection: ResNet
  Metadata:
    FLOPs: 2337073152
    Parameters: 11690000
    File Size: 46827520
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnet18
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L641
  Weights: https://download.pytorch.org/models/resnet18-5c106cde.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 69.74%
      Top 5 Accuracy: 89.09%
- Name: resnet26
  In Collection: ResNet
  Metadata:
    FLOPs: 3026804736
    Parameters: 16000000
    File Size: 64129972
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnet26
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L675
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.29%
      Top 5 Accuracy: 92.57%
- Name: resnet34
  In Collection: ResNet
  Metadata:
    FLOPs: 4718469120
    Parameters: 21800000
    File Size: 87290831
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnet34
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L658
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.11%
      Top 5 Accuracy: 92.28%
- Name: resnet50
  In Collection: ResNet
  Metadata:
    FLOPs: 5282531328
    Parameters: 25560000
    File Size: 102488165
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnet50
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L691
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.04%
      Top 5 Accuracy: 94.39%
- Name: resnetblur50
  In Collection: ResNet
  Metadata:
    FLOPs: 6621606912
    Parameters: 25560000
    File Size: 102488165
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Blur Pooling
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Data:
    - ImageNet
    ID: resnetblur50
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L1160
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.29%
      Top 5 Accuracy: 94.64%
- Name: tv_resnet101
  In Collection: ResNet
  Metadata:
    FLOPs: 10068547584
    Parameters: 44550000
    File Size: 178728960
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tv_resnet101
    LR: 0.1
    Epochs: 90
    Crop Pct: '0.875'
    LR Gamma: 0.1
    Momentum: 0.9
    Batch Size: 32
    Image Size: '224'
    LR Step Size: 30
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L761
  Weights: https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.37%
      Top 5 Accuracy: 93.56%
- Name: tv_resnet152
  In Collection: ResNet
  Metadata:
    FLOPs: 14857660416
    Parameters: 60190000
    File Size: 241530880
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tv_resnet152
    LR: 0.1
    Epochs: 90
    Crop Pct: '0.875'
    LR Gamma: 0.1
    Momentum: 0.9
    Batch Size: 32
    Image Size: '224'
    LR Step Size: 30
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L769
  Weights: https://download.pytorch.org/models/resnet152-b121ed2d.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.32%
      Top 5 Accuracy: 94.05%
- Name: tv_resnet34
  In Collection: ResNet
  Metadata:
    FLOPs: 4718469120
    Parameters: 21800000
    File Size: 87306240
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tv_resnet34
    LR: 0.1
    Epochs: 90
    Crop Pct: '0.875'
    LR Gamma: 0.1
    Momentum: 0.9
    Batch Size: 32
    Image Size: '224'
    LR Step Size: 30
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L745
  Weights: https://download.pytorch.org/models/resnet34-333f7ec4.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 73.3%
      Top 5 Accuracy: 91.42%
- Name: tv_resnet50
  In Collection: ResNet
  Metadata:
    FLOPs: 5282531328
    Parameters: 25560000
    File Size: 102502400
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tv_resnet50
    LR: 0.1
    Epochs: 90
    Crop Pct: '0.875'
    LR Gamma: 0.1
    Momentum: 0.9
    Batch Size: 32
    Image Size: '224'
    LR Step Size: 30
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L753
  Weights: https://download.pytorch.org/models/resnet50-19c8e357.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 76.16%
      Top 5 Accuracy: 92.88%
-->