File size: 7,920 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# RexNet

**Rank Expansion Networks** (ReXNets) follow a set of new design principles for designing bottlenecks in image classification models. Authors refine each layer by 1) expanding the input channel size of the convolution layer and 2) replacing the [ReLU6s](https://www.paperswithcode.com/method/relu6).

## How do I use this model on an image?
To load a pretrained model:

```python
import timm
model = timm.create_model('rexnet_100', pretrained=True)
model.eval()
```

To load and preprocess the image:
```python 
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

config = resolve_data_config({}, model=model)
transform = create_transform(**config)

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:
```python
import torch
with torch.no_grad():
    out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```

To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename) 
with open("imagenet_classes.txt", "r") as f:
    categories = [s.strip() for s in f.readlines()]

# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
    print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `rexnet_100`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.

## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('rexnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.

## Citation

```BibTeX
@misc{han2020rexnet,
      title={ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, 
      author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
      year={2020},
      eprint={2007.00992},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: RexNet
  Paper:
    Title: 'ReXNet: Diminishing Representational Bottleneck on Convolutional Neural
      Network'
    URL: https://paperswithcode.com/paper/rexnet-diminishing-representational
Models:
- Name: rexnet_100
  In Collection: RexNet
  Metadata:
    FLOPs: 509989377
    Parameters: 4800000
    File Size: 19417552
    Architecture:
    - Batch Normalization
    - Convolution
    - Dropout
    - ReLU6
    - Residual Connection
    Tasks:
    - Image Classification
    Training Techniques:
    - Label Smoothing
    - Linear Warmup With Cosine Annealing
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x NVIDIA V100 GPUs
    ID: rexnet_100
    LR: 0.5
    Epochs: 400
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 512
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    Label Smoothing: 0.1
  Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L212
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.86%
      Top 5 Accuracy: 93.88%
- Name: rexnet_130
  In Collection: RexNet
  Metadata:
    FLOPs: 848364461
    Parameters: 7560000
    File Size: 30508197
    Architecture:
    - Batch Normalization
    - Convolution
    - Dropout
    - ReLU6
    - Residual Connection
    Tasks:
    - Image Classification
    Training Techniques:
    - Label Smoothing
    - Linear Warmup With Cosine Annealing
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x NVIDIA V100 GPUs
    ID: rexnet_130
    LR: 0.5
    Epochs: 400
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 512
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    Label Smoothing: 0.1
  Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L218
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.49%
      Top 5 Accuracy: 94.67%
- Name: rexnet_150
  In Collection: RexNet
  Metadata:
    FLOPs: 1122374469
    Parameters: 9730000
    File Size: 39227315
    Architecture:
    - Batch Normalization
    - Convolution
    - Dropout
    - ReLU6
    - Residual Connection
    Tasks:
    - Image Classification
    Training Techniques:
    - Label Smoothing
    - Linear Warmup With Cosine Annealing
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x NVIDIA V100 GPUs
    ID: rexnet_150
    LR: 0.5
    Epochs: 400
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 512
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    Label Smoothing: 0.1
  Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L224
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 80.31%
      Top 5 Accuracy: 95.16%
- Name: rexnet_200
  In Collection: RexNet
  Metadata:
    FLOPs: 1960224938
    Parameters: 16370000
    File Size: 65862221
    Architecture:
    - Batch Normalization
    - Convolution
    - Dropout
    - ReLU6
    - Residual Connection
    Tasks:
    - Image Classification
    Training Techniques:
    - Label Smoothing
    - Linear Warmup With Cosine Annealing
    - Nesterov Accelerated Gradient
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x NVIDIA V100 GPUs
    ID: rexnet_200
    LR: 0.5
    Epochs: 400
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 512
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    Label Smoothing: 0.1
  Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L230
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 81.63%
      Top 5 Accuracy: 95.67%
-->