File size: 7,920 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# RexNet
**Rank Expansion Networks** (ReXNets) follow a set of new design principles for designing bottlenecks in image classification models. Authors refine each layer by 1) expanding the input channel size of the convolution layer and 2) replacing the [ReLU6s](https://www.paperswithcode.com/method/relu6).
## How do I use this model on an image?
To load a pretrained model:
```python
import timm
model = timm.create_model('rexnet_100', pretrained=True)
model.eval()
```
To load and preprocess the image:
```python
import urllib
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
config = resolve_data_config({}, model=model)
transform = create_transform(**config)
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
img = Image.open(filename).convert('RGB')
tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```
To get the model predictions:
```python
import torch
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
print(probabilities.shape)
# prints: torch.Size([1000])
```
To get the top-5 predictions class names:
```python
# Get imagenet class mappings
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
urllib.request.urlretrieve(url, filename)
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Print top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
# prints class names and probabilities like:
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```
Replace the model name with the variant you want to use, e.g. `rexnet_100`. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use.
## How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
```python
model = timm.create_model('rexnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.
## How do I train this model?
You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh.
## Citation
```BibTeX
@misc{han2020rexnet,
title={ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network},
author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
year={2020},
eprint={2007.00992},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
Type: model-index
Collections:
- Name: RexNet
Paper:
Title: 'ReXNet: Diminishing Representational Bottleneck on Convolutional Neural
Network'
URL: https://paperswithcode.com/paper/rexnet-diminishing-representational
Models:
- Name: rexnet_100
In Collection: RexNet
Metadata:
FLOPs: 509989377
Parameters: 4800000
File Size: 19417552
Architecture:
- Batch Normalization
- Convolution
- Dropout
- ReLU6
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- Linear Warmup With Cosine Annealing
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: rexnet_100
LR: 0.5
Epochs: 400
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 1.0e-05
Interpolation: bicubic
Label Smoothing: 0.1
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L212
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.86%
Top 5 Accuracy: 93.88%
- Name: rexnet_130
In Collection: RexNet
Metadata:
FLOPs: 848364461
Parameters: 7560000
File Size: 30508197
Architecture:
- Batch Normalization
- Convolution
- Dropout
- ReLU6
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- Linear Warmup With Cosine Annealing
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: rexnet_130
LR: 0.5
Epochs: 400
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 1.0e-05
Interpolation: bicubic
Label Smoothing: 0.1
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L218
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.49%
Top 5 Accuracy: 94.67%
- Name: rexnet_150
In Collection: RexNet
Metadata:
FLOPs: 1122374469
Parameters: 9730000
File Size: 39227315
Architecture:
- Batch Normalization
- Convolution
- Dropout
- ReLU6
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- Linear Warmup With Cosine Annealing
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: rexnet_150
LR: 0.5
Epochs: 400
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 1.0e-05
Interpolation: bicubic
Label Smoothing: 0.1
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L224
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 80.31%
Top 5 Accuracy: 95.16%
- Name: rexnet_200
In Collection: RexNet
Metadata:
FLOPs: 1960224938
Parameters: 16370000
File Size: 65862221
Architecture:
- Batch Normalization
- Convolution
- Dropout
- ReLU6
- Residual Connection
Tasks:
- Image Classification
Training Techniques:
- Label Smoothing
- Linear Warmup With Cosine Annealing
- Nesterov Accelerated Gradient
- Weight Decay
Training Data:
- ImageNet
Training Resources: 4x NVIDIA V100 GPUs
ID: rexnet_200
LR: 0.5
Epochs: 400
Dropout: 0.2
Crop Pct: '0.875'
Momentum: 0.9
Batch Size: 512
Image Size: '224'
Weight Decay: 1.0e-05
Interpolation: bicubic
Label Smoothing: 0.1
Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L230
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth
Results:
- Task: Image Classification
Dataset: ImageNet
Metrics:
Top 1 Accuracy: 81.63%
Top 5 Accuracy: 95.67%
--> |