|
import numpy as np |
|
import torch |
|
from torch.autograd import Function |
|
from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive |
|
|
|
|
|
class GuidedBackpropReLU(Function): |
|
@staticmethod |
|
def forward(self, input_img): |
|
positive_mask = (input_img > 0).type_as(input_img) |
|
output = torch.addcmul( |
|
torch.zeros( |
|
input_img.size()).type_as(input_img), |
|
input_img, |
|
positive_mask) |
|
self.save_for_backward(input_img, output) |
|
return output |
|
|
|
@staticmethod |
|
def backward(self, grad_output): |
|
input_img, output = self.saved_tensors |
|
grad_input = None |
|
|
|
positive_mask_1 = (input_img > 0).type_as(grad_output) |
|
positive_mask_2 = (grad_output > 0).type_as(grad_output) |
|
grad_input = torch.addcmul( |
|
torch.zeros( |
|
input_img.size()).type_as(input_img), |
|
torch.addcmul( |
|
torch.zeros( |
|
input_img.size()).type_as(input_img), |
|
grad_output, |
|
positive_mask_1), |
|
positive_mask_2) |
|
return grad_input |
|
|
|
|
|
class GuidedBackpropReLUasModule(torch.nn.Module): |
|
def __init__(self): |
|
super(GuidedBackpropReLUasModule, self).__init__() |
|
|
|
def forward(self, input_img): |
|
return GuidedBackpropReLU.apply(input_img) |
|
|
|
|
|
class GuidedBackpropReLUModel: |
|
def __init__(self, model, use_cuda): |
|
self.model = model |
|
self.model.eval() |
|
self.cuda = use_cuda |
|
if self.cuda: |
|
self.model = self.model.cuda() |
|
|
|
def forward(self, input_img): |
|
return self.model(input_img) |
|
|
|
def recursive_replace_relu_with_guidedrelu(self, module_top): |
|
|
|
for idx, module in module_top._modules.items(): |
|
self.recursive_replace_relu_with_guidedrelu(module) |
|
if module.__class__.__name__ == 'ReLU': |
|
module_top._modules[idx] = GuidedBackpropReLU.apply |
|
print("b") |
|
|
|
def recursive_replace_guidedrelu_with_relu(self, module_top): |
|
try: |
|
for idx, module in module_top._modules.items(): |
|
self.recursive_replace_guidedrelu_with_relu(module) |
|
if module == GuidedBackpropReLU.apply: |
|
module_top._modules[idx] = torch.nn.ReLU() |
|
except BaseException: |
|
pass |
|
|
|
def __call__(self, input_img, target_category=None): |
|
replace_all_layer_type_recursive(self.model, |
|
torch.nn.ReLU, |
|
GuidedBackpropReLUasModule()) |
|
|
|
if self.cuda: |
|
input_img = input_img.cuda() |
|
|
|
input_img = input_img.requires_grad_(True) |
|
|
|
output = self.forward(input_img) |
|
|
|
if target_category is None: |
|
target_category = np.argmax(output.cpu().data.numpy()) |
|
|
|
loss = output[0, target_category] |
|
loss.backward(retain_graph=True) |
|
|
|
output = input_img.grad.cpu().data.numpy() |
|
output = output[0, :, :, :] |
|
output = output.transpose((1, 2, 0)) |
|
|
|
replace_all_layer_type_recursive(self.model, |
|
GuidedBackpropReLUasModule, |
|
torch.nn.ReLU()) |
|
|
|
return output |
|
|