Spaces:
Running
Running
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
import os | |
import logging | |
import numpy as np | |
print(os.getcwd()) | |
# | |
from sentence_transformers import SentenceTransformer | |
from xgboost import XGBClassifier | |
import pickle | |
import xgboost as xgb | |
#logging | |
logging.basicConfig(level=logging.INFO) | |
logging.info("LAS ESTRELLAS!!!!!") | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# Load a pre-trained Sentence-BERT model | |
print("loading model") | |
model = SentenceTransformer('sentence-transformers/all-MPNET-base-v2', device='cpu') | |
#load the models | |
with open("xgb_bin.pkl","rb") as f: | |
xgb_bin = pickle.load(f) | |
with open("xgb_multi.pkl","rb") as f: | |
xgb_multi = pickle.load(f) | |
logging.info("generating embedding") | |
# Generate sentence embeddings | |
sentence_embeddings = model.encode(test_dataset["quote"]) | |
logging.info(" embedding done") | |
X_train = sentence_embeddings.copy() | |
y_train = np.array(test_dataset["label"].copy()) | |
#binary | |
y_train_binary = y_train.copy() | |
y_train_binary[y_train_binary != 0] = 1 | |
#multi class | |
X_train_multi = X_train[y_train != 0] | |
y_train_multi = y_train[y_train != 0] | |
logging.info(f"Xtrain_multi_shape:{X_train_multi.shape}") | |
logging.info(f"Xtrain shape:{X_train.shape}") | |
#predictions | |
y_pred_bin = xgb_bin.predict(X_train) | |
y_pred_multi = xgb_multi.predict(X_train_multi.reshape(-1,768)) + 1 | |
logging.info(f"y_pred_bin:{y_pred_bin.shape}") | |
logging.info(f"y_pred_multi shape:{y_pred_multi.shape}") | |
y_pred_bin[y_train_binary==1] = y_pred_multi | |
#predictions = xgb.predict(embeddings) | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
#predictions = xgb.predict(embeddings) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, y_pred_bin) | |
logging.info(f"Accuracy : {accuracy}") | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |