csk99's picture
Update tasks/text.py
5358540 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
import os
import logging
import numpy as np
print(os.getcwd())
#
from sentence_transformers import SentenceTransformer
from xgboost import XGBClassifier
import pickle
import xgboost as xgb
#logging
logging.basicConfig(level=logging.INFO)
logging.info("LAS ESTRELLAS!!!!!")
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# Load a pre-trained Sentence-BERT model
print("loading model")
model = SentenceTransformer('sentence-transformers/all-MPNET-base-v2', device='cpu')
#load the models
with open("xgb_bin.pkl","rb") as f:
xgb_bin = pickle.load(f)
with open("xgb_multi.pkl","rb") as f:
xgb_multi = pickle.load(f)
logging.info("generating embedding")
# Generate sentence embeddings
sentence_embeddings = model.encode(test_dataset["quote"])
logging.info(" embedding done")
X_train = sentence_embeddings.copy()
y_train = np.array(test_dataset["label"].copy())
#binary
y_train_binary = y_train.copy()
y_train_binary[y_train_binary != 0] = 1
#multi class
X_train_multi = X_train[y_train != 0]
y_train_multi = y_train[y_train != 0]
logging.info(f"Xtrain_multi_shape:{X_train_multi.shape}")
logging.info(f"Xtrain shape:{X_train.shape}")
#predictions
y_pred_bin = xgb_bin.predict(X_train)
y_pred_multi = xgb_multi.predict(X_train_multi.reshape(-1,768)) + 1
logging.info(f"y_pred_bin:{y_pred_bin.shape}")
logging.info(f"y_pred_multi shape:{y_pred_multi.shape}")
y_pred_bin[y_train_binary==1] = y_pred_multi
#predictions = xgb.predict(embeddings)
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
#predictions = xgb.predict(embeddings)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, y_pred_bin)
logging.info(f"Accuracy : {accuracy}")
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results