Spaces:
Running
Running
File size: 11,652 Bytes
9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import re
import tempfile
import requests
import gradio as gr
from PyPDF2 import PdfReader
import openai
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize Hugging Face models
HUGGINGFACE_MODELS = {
"Phi-3 Mini 128k Instruct by EswardiVI": "eswardivi/Phi-3-mini-128k-instruct",
"Phi-3 Mini 128k Instruct by TaufiqDP": "taufiqdp/phi-3-mini-128k-instruct"
}
# Utility Functions
def extract_text_from_pdf(pdf_path):
"""Extract text content from PDF file."""
try:
reader = PdfReader(pdf_path)
text = ""
for page_num, page in enumerate(reader.pages, start=1):
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
else:
logging.warning(f"No text found on page {page_num}.")
if not text.strip():
return "Error: No extractable text found in the PDF."
return text
except Exception as e:
logging.error(f"Error reading PDF file: {e}")
return f"Error reading PDF file: {e}"
def format_content(text, format_type):
"""Format extracted text according to specified format."""
if format_type == 'txt':
return text
elif format_type == 'md':
paragraphs = text.split('\n\n')
return '\n\n'.join(paragraphs)
elif format_type == 'html':
paragraphs = text.split('\n\n')
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
else:
logging.error(f"Unsupported format: {format_type}")
return f"Unsupported format: {format_type}"
def split_into_snippets(text, context_size):
"""Split text into manageable snippets based on context size."""
sentences = re.split(r'(?<=[.!?]) +', text)
snippets = []
current_snippet = ""
for sentence in sentences:
if len(current_snippet) + len(sentence) + 1 > context_size:
if current_snippet:
snippets.append(current_snippet.strip())
current_snippet = sentence + " "
else:
snippets.append(sentence.strip())
current_snippet = ""
else:
current_snippet += sentence + " "
if current_snippet.strip():
snippets.append(current_snippet.strip())
return snippets
def build_prompts(snippets, prompt_instruction, custom_prompt):
"""Build formatted prompts from text snippets."""
prompts = []
for idx, snippet in enumerate(snippets, start=1):
current_prompt = custom_prompt if custom_prompt else prompt_instruction
framed_prompt = f"---\nPart {idx} of {len(snippets)}:\n{current_prompt}\n\n{snippet}\n\nEnd of Part {idx}.\n---"
prompts.append(framed_prompt)
return prompts
def send_to_huggingface(prompt, model_name):
"""Send prompt to Hugging Face model."""
try:
payload = {"inputs": prompt}
response = requests.post(
f"https://api-inference.huggingface.co/models/{model_name}",
json=payload
)
if response.status_code == 200:
return response.json()[0].get('generated_text', 'No generated text found.')
else:
error_info = response.json()
error_message = error_info.get('error', 'Unknown error occurred.')
logging.error(f"Error from Hugging Face model: {error_message}")
return f"Error from Hugging Face model: {error_message}"
except Exception as e:
logging.error(f"Error interacting with Hugging Face model: {e}")
return f"Error interacting with Hugging Face model: {e}"
def authenticate_openai(api_key):
"""Authenticate with OpenAI API."""
if api_key:
try:
openai.api_key = api_key
openai.Model.list()
return "OpenAI Authentication Successful!"
except Exception as e:
logging.error(f"OpenAI API Key Error: {e}")
return f"OpenAI API Key Error: {e}"
return "No OpenAI API key provided."
# Main Interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
# Header
gr.Markdown("# π Smart PDF Summarizer")
gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.")
# Authentication Section
with gr.Row():
with gr.Column(scale=1):
openai_api_key = gr.Textbox(
label="π OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key (optional)"
)
auth_status = gr.Textbox(
label="Authentication Status",
interactive=False
)
auth_button = gr.Button("π Authenticate", variant="primary")
# Main Content
with gr.Row():
# Left Column - Input Options
with gr.Column(scale=1):
pdf_input = gr.File(
label="π Upload PDF",
file_types=[".pdf"]
)
with gr.Row():
format_type = gr.Radio(
choices=["txt", "md", "html"],
value="txt",
label="π Output Format"
)
context_size = gr.Slider(
minimum=4000,
maximum=128000,
step=4000,
value=32000,
label="π Context Window Size"
)
snippet_number = gr.Number(
label="π’ Snippet Number (Optional)",
value=None,
precision=0
)
custom_prompt = gr.Textbox(
label="βοΈ Custom Prompt",
placeholder="Enter your custom prompt here...",
lines=2
)
model_choice = gr.Radio(
choices=["OpenAI ChatGPT", "Hugging Face Model"],
value="OpenAI ChatGPT",
label="π€ Model Selection"
)
hf_model = gr.Dropdown(
choices=list(HUGGINGFACE_MODELS.keys()),
label="π§ Hugging Face Model",
visible=False
)
# Right Column - Output
with gr.Column(scale=1):
with gr.Row():
process_button = gr.Button("π Process PDF", variant="primary")
progress_status = gr.Textbox(
label="π Progress",
interactive=False
)
generated_prompt = gr.Textbox(
label="π Generated Prompt",
lines=10
)
summary_output = gr.Textbox(
label="π Summary",
lines=15
)
with gr.Row():
download_prompt = gr.File(
label="π₯ Download Prompt"
)
download_summary = gr.File(
label="π₯ Download Summary"
)
# Event Handlers
def toggle_hf_model(choice):
return gr.update(visible=choice == "Hugging Face Model")
def handle_authentication(api_key):
return authenticate_openai(api_key)
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice, api_key):
try:
if not pdf:
return "Please upload a PDF file.", "", "", None, None
# Extract text
text = extract_text_from_pdf(pdf.name)
if text.startswith("Error"):
return text, "", "", None, None
# Format content
formatted_text = format_content(text, fmt)
# Split into snippets
snippets = split_into_snippets(formatted_text, ctx_size)
# Process specific snippet or all
if snippet_num is not None:
if 1 <= snippet_num <= len(snippets):
selected_snippets = [snippets[snippet_num - 1]]
else:
return f"Invalid snippet number. Please choose between 1 and {len(snippets)}.", "", "", None, None
else:
selected_snippets = snippets
# Build prompts
default_prompt = "Summarize the following text:"
prompts = build_prompts(selected_snippets, default_prompt, prompt)
full_prompt = "\n".join(prompts)
# Generate summary
if model_selection == "OpenAI ChatGPT":
if not api_key:
return "OpenAI API key required.", full_prompt, "", None, None
try:
openai.api_key = api_key
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": full_prompt}]
)
summary = response.choices[0].message.content
except Exception as e:
return f"OpenAI API error: {str(e)}", full_prompt, "", None, None
else:
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice])
# Save files for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
prompt_file.write(full_prompt)
prompt_path = prompt_file.name
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
summary_file.write(summary)
summary_path = summary_file.name
return "Processing complete!", full_prompt, summary, prompt_path, summary_path
except Exception as e:
logging.error(f"Error processing PDF: {e}")
return f"Error processing PDF: {str(e)}", "", "", None, None
# Connect event handlers
model_choice.change(
toggle_hf_model,
inputs=[model_choice],
outputs=[hf_model]
)
auth_button.click(
handle_authentication,
inputs=[openai_api_key],
outputs=[auth_status]
)
process_button.click(
process_pdf,
inputs=[
pdf_input,
format_type,
context_size,
snippet_number,
custom_prompt,
model_choice,
hf_model,
openai_api_key
],
outputs=[
progress_status,
generated_prompt,
summary_output,
download_prompt,
download_summary
]
)
# Instructions
gr.Markdown("""
### π Instructions:
1. (Optional) Enter your OpenAI API key and authenticate
2. Upload a PDF document
3. Choose output format and context window size
4. Optionally specify a snippet number or custom prompt
5. Select between OpenAI ChatGPT or Hugging Face model
6. Click 'Process PDF' to generate summary
7. Download the generated prompt and summary as needed
### βοΈ Features:
- Support for multiple PDF formats
- Flexible text formatting options
- Custom prompt creation
- Multiple AI model options
- Snippet-based processing
- Downloadable outputs
""")
# Launch the interface
if __name__ == "__main__":
demo.launch(share=False, debug=True) |