skytnt commited on
Commit
fb95943
·
1 Parent(s): e0cfda2
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. app.py +42 -34
  3. lexicon/zaonhe.json +19 -0
  4. lexicon/zaonhe.ocd2 +3 -0
  5. text/shanghainese.py +1 -1
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.o filter=lfs diff=lfs merge=lfs -text
33
  *.dll filter=lfs diff=lfs merge=lfs -text
34
  *.so filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.o filter=lfs diff=lfs merge=lfs -text
33
  *.dll filter=lfs diff=lfs merge=lfs -text
34
  *.so filter=lfs diff=lfs merge=lfs -text
35
+ *.ocd2 filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import json
2
  import os
3
  import re
@@ -16,8 +17,8 @@ from mel_processing import spectrogram_torch
16
  limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
17
 
18
 
19
- def get_text(text, hps, is_phoneme):
20
- text_norm = text_to_sequence(text, hps.symbols, [] if is_phoneme else hps.data.text_cleaners)
21
  if hps.data.add_blank:
22
  text_norm = commons.intersperse(text_norm, 0)
23
  text_norm = LongTensor(text_norm)
@@ -25,20 +26,17 @@ def get_text(text, hps, is_phoneme):
25
 
26
 
27
  def create_tts_fn(model, hps, speaker_ids):
28
- def tts_fn(text, speaker, speed, is_phoneme):
29
  if limitation:
30
- text_len = len(text)
31
- max_len = 120
32
- if is_phoneme:
33
  max_len *= 3
34
- else:
35
- if len(hps.data.text_cleaners) > 0 and hps.data.text_cleaners[0] == "zh_ja_mixture_cleaners":
36
- text_len = len(re.sub("(\[ZH\]|\[JA\])", "", text))
37
  if text_len > max_len:
38
  return "Error: Text is too long", None
39
 
40
  speaker_id = speaker_ids[speaker]
41
- stn_tst = get_text(text, hps, is_phoneme)
42
  with no_grad():
43
  x_tst = stn_tst.unsqueeze(0)
44
  x_tst_lengths = LongTensor([stn_tst.size(0)])
@@ -115,11 +113,12 @@ def create_soft_vc_fn(model, hps, speaker_ids):
115
  return soft_vc_fn
116
 
117
 
118
- def create_to_phoneme_fn(hps):
119
- def to_phoneme_fn(text):
120
- return _clean_text(text, hps.data.text_cleaners) if text != "" else ""
 
121
 
122
- return to_phoneme_fn
123
 
124
 
125
  css = """
@@ -141,6 +140,10 @@ css = """
141
  """
142
 
143
  if __name__ == '__main__':
 
 
 
 
144
  models_tts = []
145
  models_vc = []
146
  models_soft_vc = []
@@ -170,50 +173,55 @@ if __name__ == '__main__':
170
  if t == "vits":
171
  models_tts.append((name, cover_path, speakers, lang, example,
172
  hps.symbols, create_tts_fn(model, hps, speaker_ids),
173
- create_to_phoneme_fn(hps)))
174
  models_vc.append((name, cover_path, speakers, create_vc_fn(model, hps, speaker_ids)))
175
  elif t == "soft-vits-vc":
176
  models_soft_vc.append((name, cover_path, speakers, create_soft_vc_fn(model, hps, speaker_ids)))
177
 
178
- hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
179
 
180
  app = gr.Blocks(css=css)
181
 
182
  with app:
183
  gr.Markdown("# Moe TTS And Voice Conversion Using VITS Model\n\n"
184
- "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.moegoe)\n\n")
 
 
 
185
  with gr.Tabs():
186
  with gr.TabItem("TTS"):
187
  with gr.Tabs():
188
  for i, (name, cover_path, speakers, lang, example, symbols, tts_fn,
189
- to_phoneme_fn) in enumerate(models_tts):
190
  with gr.TabItem(f"model{i}"):
191
  with gr.Column():
192
  cover_markdown = f"![cover](file/{cover_path})\n\n" if cover_path else ""
193
  gr.Markdown(f"## {name}\n\n"
194
  f"{cover_markdown}"
195
  f"lang: {lang}")
196
- tts_input1 = gr.TextArea(label="Text (120 words limitation)", value=example,
197
  elem_id=f"tts-input{i}")
198
  tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
199
  type="index", value=speakers[0])
200
  tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
201
  with gr.Accordion(label="Advanced Options", open=False):
202
- phoneme_input = gr.Checkbox(value=False, label="Phoneme input")
203
- to_phoneme_btn = gr.Button("Covert text to phoneme")
204
- phoneme_list = gr.Dataset(label="Phoneme list", components=[tts_input1],
205
- samples=[[x] for x in symbols],
206
- elem_id=f"phoneme-list{i}")
207
- phoneme_list_json = gr.Json(value=symbols, visible=False)
208
  tts_submit = gr.Button("Generate", variant="primary")
209
  tts_output1 = gr.Textbox(label="Output Message")
210
  tts_output2 = gr.Audio(label="Output Audio")
211
- tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, phoneme_input],
212
  [tts_output1, tts_output2])
213
- to_phoneme_btn.click(to_phoneme_fn, [tts_input1], [tts_input1])
214
- phoneme_list.click(None, [phoneme_list, phoneme_list_json], [],
215
- _js=f"""
216
- (i,phonemes) => {{
 
 
217
  let root = document.querySelector("body > gradio-app");
218
  if (root.shadowRoot != null)
219
  root = root.shadowRoot;
@@ -221,12 +229,12 @@ if __name__ == '__main__':
221
  let startPos = text_input.selectionStart;
222
  let endPos = text_input.selectionEnd;
223
  let oldTxt = text_input.value;
224
- let result = oldTxt.substring(0, startPos) + phonemes[i] + oldTxt.substring(endPos);
225
  text_input.value = result;
226
  let x = window.scrollX, y = window.scrollY;
227
  text_input.focus();
228
- text_input.selectionStart = startPos + phonemes[i].length;
229
- text_input.selectionEnd = startPos + phonemes[i].length;
230
  text_input.blur();
231
  window.scrollTo(x, y);
232
  return [];
@@ -278,4 +286,4 @@ if __name__ == '__main__':
278
  "- [https://github.com/luoyily/MoeTTS](https://github.com/luoyily/MoeTTS)\n"
279
  "- [https://github.com/Francis-Komizu/Sovits](https://github.com/Francis-Komizu/Sovits)"
280
  )
281
- app.queue(concurrency_count=3).launch(show_api=False)
 
1
+ import argparse
2
  import json
3
  import os
4
  import re
 
17
  limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
18
 
19
 
20
+ def get_text(text, hps, is_symbol):
21
+ text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
22
  if hps.data.add_blank:
23
  text_norm = commons.intersperse(text_norm, 0)
24
  text_norm = LongTensor(text_norm)
 
26
 
27
 
28
  def create_tts_fn(model, hps, speaker_ids):
29
+ def tts_fn(text, speaker, speed, is_symbol):
30
  if limitation:
31
+ text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
32
+ max_len = 150
33
+ if is_symbol:
34
  max_len *= 3
 
 
 
35
  if text_len > max_len:
36
  return "Error: Text is too long", None
37
 
38
  speaker_id = speaker_ids[speaker]
39
+ stn_tst = get_text(text, hps, is_symbol)
40
  with no_grad():
41
  x_tst = stn_tst.unsqueeze(0)
42
  x_tst_lengths = LongTensor([stn_tst.size(0)])
 
113
  return soft_vc_fn
114
 
115
 
116
+ def create_to_symbol_fn(hps):
117
+ def to_symbol_fn(is_symbol_input, input_text, temp_text):
118
+ return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \
119
+ else (temp_text, temp_text)
120
 
121
+ return to_symbol_fn
122
 
123
 
124
  css = """
 
140
  """
141
 
142
  if __name__ == '__main__':
143
+ parser = argparse.ArgumentParser()
144
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
145
+ args = parser.parse_args()
146
+
147
  models_tts = []
148
  models_vc = []
149
  models_soft_vc = []
 
173
  if t == "vits":
174
  models_tts.append((name, cover_path, speakers, lang, example,
175
  hps.symbols, create_tts_fn(model, hps, speaker_ids),
176
+ create_to_symbol_fn(hps)))
177
  models_vc.append((name, cover_path, speakers, create_vc_fn(model, hps, speaker_ids)))
178
  elif t == "soft-vits-vc":
179
  models_soft_vc.append((name, cover_path, speakers, create_soft_vc_fn(model, hps, speaker_ids)))
180
 
181
+ hubert = torch.hub.load("bshall/hubert:main", "hubert_soft", trust_repo=True)
182
 
183
  app = gr.Blocks(css=css)
184
 
185
  with app:
186
  gr.Markdown("# Moe TTS And Voice Conversion Using VITS Model\n\n"
187
+ "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.moegoe)\n\n"
188
+ "[Open In Colab]"
189
+ "(https://colab.research.google.com/drive/14Pb8lpmwZL-JI5Ub6jpG4sz2-8KS0kbS?usp=sharing)"
190
+ " without queue and length limitation")
191
  with gr.Tabs():
192
  with gr.TabItem("TTS"):
193
  with gr.Tabs():
194
  for i, (name, cover_path, speakers, lang, example, symbols, tts_fn,
195
+ to_symbol_fn) in enumerate(models_tts):
196
  with gr.TabItem(f"model{i}"):
197
  with gr.Column():
198
  cover_markdown = f"![cover](file/{cover_path})\n\n" if cover_path else ""
199
  gr.Markdown(f"## {name}\n\n"
200
  f"{cover_markdown}"
201
  f"lang: {lang}")
202
+ tts_input1 = gr.TextArea(label="Text (150 words limitation)", value=example,
203
  elem_id=f"tts-input{i}")
204
  tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
205
  type="index", value=speakers[0])
206
  tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1)
207
  with gr.Accordion(label="Advanced Options", open=False):
208
+ temp_text_var = gr.Variable()
209
+ symbol_input = gr.Checkbox(value=False, label="Symbol input")
210
+ symbol_list = gr.Dataset(label="Symbol list", components=[tts_input1],
211
+ samples=[[x] for x in symbols],
212
+ elem_id=f"symbol-list{i}")
213
+ symbol_list_json = gr.Json(value=symbols, visible=False)
214
  tts_submit = gr.Button("Generate", variant="primary")
215
  tts_output1 = gr.Textbox(label="Output Message")
216
  tts_output2 = gr.Audio(label="Output Audio")
217
+ tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, symbol_input],
218
  [tts_output1, tts_output2])
219
+ symbol_input.change(to_symbol_fn,
220
+ [symbol_input, tts_input1, temp_text_var],
221
+ [tts_input1, temp_text_var])
222
+ symbol_list.click(None, [symbol_list, symbol_list_json], [],
223
+ _js=f"""
224
+ (i,symbols) => {{
225
  let root = document.querySelector("body > gradio-app");
226
  if (root.shadowRoot != null)
227
  root = root.shadowRoot;
 
229
  let startPos = text_input.selectionStart;
230
  let endPos = text_input.selectionEnd;
231
  let oldTxt = text_input.value;
232
+ let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
233
  text_input.value = result;
234
  let x = window.scrollX, y = window.scrollY;
235
  text_input.focus();
236
+ text_input.selectionStart = startPos + symbols[i].length;
237
+ text_input.selectionEnd = startPos + symbols[i].length;
238
  text_input.blur();
239
  window.scrollTo(x, y);
240
  return [];
 
286
  "- [https://github.com/luoyily/MoeTTS](https://github.com/luoyily/MoeTTS)\n"
287
  "- [https://github.com/Francis-Komizu/Sovits](https://github.com/Francis-Komizu/Sovits)"
288
  )
289
+ app.queue(concurrency_count=3).launch(show_api=False, share=args.share)
lexicon/zaonhe.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Shanghainese to IPA",
3
+ "segmentation": {
4
+ "type": "mmseg",
5
+ "dict": {
6
+ "type": "ocd2",
7
+ "file": "zaonhe.ocd2"
8
+ }
9
+ },
10
+ "conversion_chain": [{
11
+ "dict": {
12
+ "type": "group",
13
+ "dicts": [{
14
+ "type": "ocd2",
15
+ "file": "zaonhe.ocd2"
16
+ }]
17
+ }
18
+ }]
19
+ }
lexicon/zaonhe.ocd2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a71b5a97eb49699f440137391565d208ea82156f0765986b7f3e16909e15672e
3
+ size 4095228
text/shanghainese.py CHANGED
@@ -3,7 +3,7 @@ import cn2an
3
  import opencc
4
 
5
 
6
- converter = opencc.OpenCC('zaonhe')
7
 
8
  # List of (Latin alphabet, ipa) pairs:
9
  _latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
 
3
  import opencc
4
 
5
 
6
+ converter = opencc.OpenCC('lexicon/zaonhe.json')
7
 
8
  # List of (Latin alphabet, ipa) pairs:
9
  _latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [