import os from threading import Thread from typing import Iterator import gradio as gr from langfuse import Langfuse from langfuse.decorators import observe import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import time MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Dorna-Llama3-8B-Instruct Chat """ PLACEHOLDER = """

Dorna-Llama3-8B-Instruct

""" custom_css = """ @import url('https://fonts.googleapis.com/css2?family=Vazirmatn&display=swap'); body, .gradio-container, .gr-button, .gr-input, .gr-slider, .gr-dropdown, .gr-markdown { font-family: 'Vazirmatn', sans-serif !important; } ._button { font-size: 20px; } pre, code { direction: ltr !important; unicode-bidi: plaintext !important; } """ system_prompt = str(os.getenv("SYSTEM_PROMPT")) secret_key = str(os.getenv("LANGFUSE_SECRET_KEY")) public_key = str(os.getenv("LANGFUSE_PUBLIC_KEY")) host = str(os.getenv("LANGFUSE_HOST")) langfuse = Langfuse( secret_key=secret_key, public_key=public_key, host=host ) def execution_time_calculator(start_time, log=True): delta = time.time() - start_time if log: print("--- %s seconds ---" % (delta)) return delta def token_per_second_calculator(tokens_count, time_delta): return tokens_count/time_delta if not torch.cuda.is_available(): DESCRIPTION = "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "PartAI/Dorna-Llama3-8B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) generation_speed = 0 def get_generation_speed(): global generation_speed return generation_speed @observe() def log_to_langfuse(message, chat_history, max_new_tokens, temperature, top_p, top_k, repetition_penalty, do_sample, generation_speed, model_outputs): print(f"generation_speed: {generation_speed}") return "".join(model_outputs) @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, do_sample: bool =True, ) -> Iterator[str]: global generation_speed global system_prompt conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=do_sample, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) start_time = time.time() t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] sum_tokens = 0 for text in streamer: num_tokens = len(tokenizer.tokenize(text)) sum_tokens += num_tokens outputs.append(text) yield "".join(outputs) time_delta = execution_time_calculator(start_time, log=False) generation_speed = token_per_second_calculator(sum_tokens, time_delta) log_function = log_to_langfuse( message=message, chat_history=chat_history, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, do_sample=do_sample, generation_speed=generation_speed, model_outputs=outputs, ) chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1, show_copy_button=True, height="68%", rtl=True) #, elem_classes=["chatbot"]) chat_input = gr.Textbox(show_label=False, lines=2, rtl=True, placeholder="ورودی", show_copy_button=True, scale=4) submit_btn = gr.Button(variant="primary", value="ارسال", size="sm", scale=1, elem_classes=["_button"]) chat_interface = gr.ChatInterface( fn=generate, additional_inputs_accordion=gr.Accordion(label="ورودی‌های اضافی", open=False), additional_inputs=[ gr.Slider( label="حداکثر تعداد توکن ها", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.01, maximum=4.0, step=0.01, value=0.5, ), gr.Slider( label="Top-p", minimum=0.05, maximum=1.0, step=0.01, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=20, ), gr.Slider( label="جریمه تکرار", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), gr.Dropdown( label="نمونه‌گیری", choices=[False, True], value=True) ], stop_btn="توقف", chatbot=chatbot, textbox=chat_input, submit_btn=submit_btn, retry_btn="🔄 تلاش مجدد", undo_btn="↩️ بازگشت", clear_btn="🗑️ پاک کردن", title="درنا، محصول مرکز تحقیقات هوش مصنوعی پارت" ) with gr.Blocks(css=custom_css, fill_height=False) as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()