# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) # OpenAI Chat completion import os from openai import AsyncOpenAI # importing openai for API usage import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools from dotenv import load_dotenv load_dotenv() # ChatOpenAI Templates # [Advanced Build Edits]: Updated the system template to improve clarity about the role of assistant chatbot system_template = """You are an expert assistant operating in a formal context. Your primary objective is to deliver clear, concise, and engaging responses. You excel at simplifying complex ideas, summarizing information succinctly, providing step-by-step solutions, creating innovative content, and adopting a professional tone when required. Ensure that all responses are accurate, approachable, succint, and easy to comprehend. """ user_template = """{input} Think through your response step by step. """ # [Advanced Build Edits]: Updated the LLM version and model parameters to fine-tune model outputs to match # specific goals and improve the quality of responses @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): settings = { "model": "gpt-4o-mini", # updated the model type since gpt-4o-mini is the most powerful model available "temperature": 0.3, # lowered the temperature to make the responses more deterministic and accurate "max_tokens": 400, # reduced max_tokens for controlling verbosity and ensuring quick responses "top_p": 0.9, # updated top_p to 0.9 for achieving a good balance between diversity and quality "frequency_penalty": 0, # default value retained for frequency_penalty "presence_penalty": 0, # default value retained for presence_penalty } cl.user_session.set("settings", settings) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: cl.Message): settings = cl.user_session.get("settings") client = AsyncOpenAI() print(message.content) prompt = Prompt( provider=ChatOpenAI.id, messages=[ PromptMessage( role="system", template=system_template, formatted=system_template, ), PromptMessage( role="user", template=user_template, formatted=user_template.format(input=message.content), ), ], inputs={"input": message.content}, settings=settings, ) print([m.to_openai() for m in prompt.messages]) msg = cl.Message(content="") # Call OpenAI async for stream_resp in await client.chat.completions.create( messages=[m.to_openai() for m in prompt.messages], stream=True, **settings ): token = stream_resp.choices[0].delta.content if not token: token = "" await msg.stream_token(token) # Update the prompt object with the completion prompt.completion = msg.content msg.prompt = prompt # Send and close the message stream await msg.send()